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Abstract. While testing is increasingly recognized as essential in scientific software development, it is

not yet standard practice within the OpenFOAM community for developing new solvers and features.
This gap stems partly from the challenges of integrating testing into typical OpenFOAM workflows and

limited guidance on implementing effective tests. Writing tests for complex software like OpenFOAM

based projects presents unique obstacles, including difficulty in configuring tests for various cases. This
paper addresses these issues by discussing established test types in the context of OpenFOAM, identi-

fying common challenges in developing tests for this platform, and suggesting best practices to enhance
the testability of code based on OpenFOAM. Detailed guidance is provided for integrating the Catch2

unit test framework, alongside two new tools: the foamUT framework and the OpenFOAM Benchmark

Runner (OBR), which facilitate unit and integration testing. To illustrate these tools in practice, we
present three case studies. The first demonstrates the direct integration of Catch2 in the WENOExt

project, showcasing test case creation and its synergy with OpenFOAM projects. The second introduces

the foamUT framework, which simplifies Catch2 integration for OpenFOAM projects. Finally, the OBR
framework is used for benchmarking and integration tests in the OpenFOAM Ginkgo layer. Additionally,

we discuss the current state of testing in OpenFOAM and emphasize the need for more comprehensive

testing practices within this community, particularly with libraries such as Catch2. Overall, this paper
serves as a practical introduction to unit and integration testing for OpenFOAM developers and intro-
duces new tools that lower the barrier to entry, improve test suite robustness, and simplify unit test

integration.

1. Motivation

In the realm of writing code and software development, perfection remains elusive, and errors, com-
monly known as bugs, are an inevitable part of the process. While often undetected or minor, some bugs
can lead to disastrous results [1], such as the Ariane 5 failure in 1996, where a buffer overflow error caused
the total loss of the rocket and payload. Bugs can exert a substantial impact not only on commercial or
industrial software but also on research software, potentially leading to increased costs, project delays,
and even leading to the retraction of papers, hindering the careers of aspiring young scientists [2]. Hence,
it is paramount to proactively detect and eliminate bugs during the development phase rather than dur-
ing the application or even after the publication of scientific work. Further, with expanding the FAIR
(Findability, Accessibility, Interoperability, and Reuse) principles to research software with FAIR4RS [3],
tests for research software may become a required part of future publications or grant proposals. Outside
of the scientific community, test-driven development has become a standard software development tool to
reduce bugs and prevent catastrophic failures. In certain cases, tests are even mandated by regulations,
such as for medical software (ISO/IEC 62304:2006). In addition, well-tested software reduces the risk of
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major bugs and improves the development process, speeds up merging and refactoring, and allows for
quickly locating the sources of errors in complex codes. Despite the recognition of the significance of these
testing strategies for research software, the de facto standard for tests, in particular in the OpenFOAM
community, remains the single validation against experimental or other numerical work [4–6]. This lack
of other testing strategies in research software for OpenFOAM is caused by a multitude of reasons, start-
ing from the large differences in the computer science background of researchers to missing scientific
recognition for writing clean, tested software, lack of resources, and a general difficulty in designing tests
for problems where the answer is part of the research itself [6]. In addition, writing tests for complex
software products, e.g., OpenFOAM, is particularly challenging because of the strong coupling between
classes and potentially large problem sizes required for testing. Therefore, this paper targets the typical
OpenFOAM engineer engaged in code development, offering a concise introduction to software testing
strategies and addressing the specific challenges encountered developing projects with OpenFOAM. Ad-
ditionally, we present proven methodologies for developing, implementing, and executing various test
types, alongside introducing novel tools designed to simplify and standardize the testing process for every
researcher developing or maintaining OpenFOAM-based software. The paper is divided into three main
sections. First, common testing strategies and their application to OpenFOAM are presented. The second
section describes the Catch2 unit testing tool and its integration into OpenFOAM, which is not without
challenges. Further, the novel foamUT framework is presented for simplified integration of unit testing in
OpenFOAM projects and the OpenFOAM Benchmark Runner tool for automatic setup, tear-down, and
post-processing of test cases. Lastly, three example test cases from real open-source OpenFOAM projects
are presented, showcasing the various testing strategies in OpenFOAM projects.

2. Testing Strategies

Among the various types of software testing, four key approaches stand out: static or linting, unit,
integration, and acceptance testing, covering the smallest testable unit in a code, e.g., a function, to the
correct operation of the complete software product [7].

2.1. Definitions. However, it is important to note that there is no standardized, universally accepted
definition of what constitutes, e.g., a unit or integration test. Consequently, for the purposes of research
code, and specifically when dealing with OpenFOAM, we will define the test types for this context.

Static Tests: Static tests aim at improving code quality and detecting and fixing problems before code
translation and execution. This can include checking for syntax errors, such as spelling mis-
takes of functions, enforcing formatting guidelines, or checking for adequate documentation of
the code. Hence, static tests can be performed frequently without requiring any compilation
or execution of the project code. Further, these tests can be easily integrated into a git de-
velopment workflow, for example, with the pre-commit hook provided by OpenFOAM in the
${WM_PROJECT_DIR}/bin/tools/pre-commit-hook.

Unit Tests: Unit tests target the smallest testable entity of a code, a function. Within the context of
OpenFOAM, we define a unit test as the test of a class’s public member or a free function for its
correct behavior.

Integration Tests: Where unit tests check the correct behavior of an isolated function, integration
tests verify the correct interaction of different functions and classes with each other. Often,
integration test methods are difficult to implement for OpenFOAM applications due to the often
inherent strong coupling between different modules. For example, a compressible solver requires
the solution of the mass, momentum, and energy equation, which all depend on each other.
Hence, isolating a single transport equation for testing requires artificial inputs mimicking the
behavior of the other missing parts, which, however, is often not possible to predict. Therefore,
in the context of this paper, we define an integration test for OpenFOAM as the execution of an
application like a solver, resembling a so-called big-bang integration testing [8]. Another subtype
of the integration test is the regression test. Regression tests are the continuous validation of a
solver’s solution against a previously generated result that has been verified.

Acceptance Tests: In the software industry, acceptance tests are performed by the customer to check if
the business requirements have been fulfilled. In the context of research software, this translates
to the correct behavior of the complete program to solve the intended problem, e.g., that the
developed solver in OpenFOAM delivers correct results. These types of tests often consist of
large test case suits, which are then compared against published results or experimental data sets
to validate the software’s accuracy.
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To effectively employ these testing strategies, knowing when to use each test and how they can support
the software development process is essential.

2.2. Testing Strategies applied to OpenFOAM. Incorporating static tests into the software devel-
opment cycle is especially valuable for larger projects, where they can be seamlessly integrated with the
version control system to ensure that every code change committed complies with the project coding
guidelines. In such scenarios, static tests are executed before every code commit, forcing contributing
researchers to adhere to the project guidelines. Unit tests offer particular advantages when implementing
new classes or functions within the OpenFOAM framework. In this context, developing the test cases
in parallel with the class or function under construction is advisable. This parallel development serves a
dual purpose. Firstly, it encourages the consideration of class design from a user’s perspective, prompt-
ing contemplation of required input variables, necessary classes, and methods for their incorporation
into the new class or function. Secondly, tests serve as documentation or a manual on how to use the
code. Lastly, unit tests, designed to exclusively evaluate the class or function, execute swiftly and can
be run frequently, ideally after each code modification. Consequently, debugging and code refinement
can progress concurrently, substantially accelerating the development. While good testing practices do
require additional time and resources, the costs are often amortized by lower debugging and maintenance
costs. However, unit tests alone do not guarantee the correct behavior of a complete program or solver in
the case of OpenFOAM. Integration tests are therefore employed to check that the individual classes and
libraries are correctly linked and executed. The nature of such tests often does not allow one singular
boolean value to be checked to validate the correct behavior. Typically, smaller test cases must be run,
resulting in multidimensional fields, e.g., a velocity field. For some instances, the method of manufactured
solution (MMS) can be used to allow a direct comparison to an analytically derived solution and verify
the results. Yet, for complex problems, it may be easier to compare to another numerically generated
data set [9]. This can be either a static data set delivered with the code base or, under the assumption
that the previous code version is correct, the output of a prior version of the same software. This test
type is called a regression test. These tests have the advantage that the code can be continuously checked
against the same case, which can be easily integrated into existing continuous integration functions of
the commonly used code hosting services. An example requiring regression testing can be a refactoring
of a function or module, e.g., a turbulence model, and validating that the refactoring did not change the
physical meaning. However, this also shows the limitation of the regression test, as new functionalities
or previously not modeled aspects cannot be compared to an old solution. In the case of new models
or functionalities, their correct behavior must be confirmed by comparison to independent numerical or
experimental data sets and their interpretation by humans. In most cases, this test type is already known
and commonly used in the CFD community to prove the correct behavior of a new model and corresponds
to the acceptance test type. Although these tests are essential for scientific publications, they do not
replace the other test types. First, acceptance tests are typically larger test cases or test suites that can
use up to hundreds, if not millions, of compute hours. Therefore, they are unsuitable for development and
debugging with frequent execution of tests. Second, running a full-scale simulation does not guarantee
that all edge cases are encountered. For example, the simulation may require a limiter to avoid numerical
instabilities, e.g., a limiter for the sub-time-stepping to avoid extremely small time steps, which, however,
is not explicitly guaranteed to be encountered and executed. In conclusion, all test types complement
each other and should be used if relevant in a research software project.

2.3. Tests in a development workflow. The previous section has outlined which test types to use
and why tests are an important and, at times, a necessary part of the software development cycle. A
key feature and advantage of unit tests is the capability to execute tests fast and frequently. Hence, they
can easily be integrated into the code development cycle, especially in combination with a version control
tool like Git [10, 11]. In the case of OpenFOAM projects, we want to highlight two aspects. The first is
test-driven development (TDD), where developers write smaller tests alongside or prior to developing new
methods; the second is automatic test execution triggered by each Git pull request or commit. The benefits
of TDD have already been discussed and are widely covered in the literature [10, 11]. Automated test
execution serves as a safeguard, catching errors that might seem trivial but could otherwise undermine the
reliability of subsequent results, requiring extensive re-validation. Many Git hosting platforms, including
GitHub, GitLab, and Bitbucket, offer integrated testing services, allowing tests to run automatically as
soon as new code is committed or a pull request is initiated. For these reasons, incorporating automated
testing into the development workflow is strongly recommended. Detailed guidance on integrating tests
with these platforms is available on their websites; as these services are continuously updated, we avoid
providing specific instructions here to ensure the information remains current.
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2.4. Current state of testing in OpenFOAM & OpenFOAM projects. Automated testing is
not entirely new to OpenFOAM, but the testing support in the current release remains limited in scope
and functionality. Under the applications/test directory, OpenFOAM provides basic tests for various
classes and functions. However, these tests lack a standardized pass/fail status; for instance, in the vector
tests, results are printed directly to the terminal, requiring the user to manually inspect the output. This
approach is prone to errors and lacks flexibility for integration into automated workflows, as it requires
users to write custom scripts for parsing and comparing text outputs – an approach that is error-prone
and difficult to adapt or extend to new tests. We do not expect extensive unit testing to be added to
OpenFOAM due to the amount of work required to retrofit tests. But the lack of a clear testing strategy
in OpenFOAM also hinders testing in OpenFOAM based community projects.

Many projects based on OpenFOAM already employ some form of tests, which typically involve running
small tutorial cases or verifying that a solver completes without crashing. While this can help catch major
failures, it often provides limited insight into specific functional issues, as the output is either not machine-
readable or fails to pinpoint which module or function is malfunctioning. Some projects have incorporated
text parsing to automate the comparison of terminal outputs, but this approach remains limited, as it
can lead to false negatives due to slight variations in numerical results or formatting. These limitations
highlight the need for more robust testing practices in OpenFOAM, using dedicated testing libraries that
support automated result validation and provide human- and machine-readable reports. Such tools can
streamline test integration, improve accuracy, and facilitate the identification of specific issues within
complex workflows, thereby enhancing the reliability and maintainability of OpenFOAM-based projects.

Notable OpenFOAM projects such as the load balancing library DLBFoam1, chemistry load bal-
ancing library for OpenFOAM v23062, wall-modeled LES3, or directChillFoam4 employ these testing
strategies. However, while these projects demonstrate the integration of testing strategies, the major-
ity of OpenFOAM-based projects still lack systematic testing approaches. In the following sections the
challenges of testing in OpenFOAM (Sec. 2.5) and proven solutions to streamline and simplify testing
processes are presented (Sec. 3).

2.5. Challenges of testing in OpenFOAM. Writing tests for a large and complex code basis a pos-
teriori is a demanding task. Ideally, the software components are already designed to be testable, e.g.,
allowing black box testing5, avoiding the introduction of dependencies, etc. [13]. In the case of Open-
FOAM, one significant challenge for testing is the complex hierachy of OpenFOAM’s classes and various
depencies among these classes, partially caused by the complex physical problems solved, which require
a significant amount of supporting code to test even small and simple functions. Further, the test case
state, e.g., the case files are often decoupled from the source code. To give an example, the test of the
calculation of the drag force on a spherical particle requires the construction of the appropriate cloud
class and corresponding particles, which in return requires the construction of an fvMesh object that has
to read information from the hard disk and necessitates a specific case directory structure, see Fig. 1.
Hence, for testing a simple drag function, several additional classes must be constructed, which introduces
further dependencies and raises the risk of introducing bugs in the test itself. Further, the execution of
the test requires a specific case directory following the OpenFOAM structure, e.g., for the construction
of the mesh or reading the model settings. While some classes of OpenFOAM provide alternative con-
structors that can use input streams or that can be constructed by components without reading a file,
e.g., for the fvMesh class, the construction of these inputs is challenging by itself6. Further, some classes
use constructors for their private members which require reading files from the hard drive, for example
the KinematicCloud class which has to read a cloud properties file during construction. Consequently,
formulating a minimal OpenFOAM case encompassing a mesh and a system folder emerges as an essential
and particular facet of unit testing for OpenFOAM. However, reading additional files from disk during a
unit test can introduce further potential complication and should be avoided if possible.

Another particularly challenging subject of testing in OpenFOAM is the parallel execution with MPI.
In an attempt to make writing OpenFOAM solvers easier, the MPI communication is capsuled and hidden
away in its own OpenFOAM Pstream library. This, however, limits the testing to the MPI interfaces
provided by OpenFOAM, e.g., no explicit MPI BARRIER function is provided. Getting access to the
low-level MPI functions is possible but challenging. Further, detecting if an error originates from MPI

1https://github.com/Aalto-CFD/DLBFoam
2https://github.com/ITV-Stuttgart/loadBalancedChemistryModel
3https://github.com/timofeymukha/libWallModelledLES
4https://github.com/blebon/directChillFoam
5Examples for black box testing strategies are given in [12]
6See following project: https://github.com/JanGaertner/unitMesh

https://github.com/Aalto-CFD/DLBFoam
https://github.com/ITV-Stuttgart/loadBalancedChemistryModel
https://github.com/timofeymukha/libWallModelledLES
https://github.com/blebon/directChillFoam
https://github.com/JanGaertner/unitMesh
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Figure 1. Sketch of the OpenFOAM fvMesh dependency to read the system/controlDict
file.

calls or the locally executed code is not always easy or possible. Yet, parallel execution is a vital part of
many OpenFOAM functionalities and should be tested.

2.6. Best Practices for Unit Testing OpenFOAM Code. Following the discussion on the current
state of testing in OpenFOAM code, this section outlines best practices for enhancing testability and
robustness in OpenFOAM applications. By addressing the unique challenges associated with file-based
operations and focusing on creating testable code, developers can ensure comprehensive test coverage
and early detection of potential issues. The practices discussed here highlight the importance of proper
class design and case setup.

2.6.1. Design OpenFOAM Classes for Testing. In addition to the general principles for designing testable
classes in C++ [13], it is advisable to design class constructors that accept either an Istream or dictionary
as an input to set all required properties. Hence, it avoids the necessity of reading a file from a disk.
The required input streams or dictionaries can then be constructed in the test and passed directly to
the class constructor without having to write or read files from the disk. Further, it is advised that the
class provides an interface to the objectRegistry. This can be achieved, e.g., by including a constant
reference to the mesh, which allows the lookup of required fields from the object registry. This has the
benefit that the class APIs are more stable, as additionally, required fields can be looked up directly in
the class and do not need to be explicitly passed.

In case the developer does not have control over the tested code, constructing a dictionary from a
string, writing it to disk, and immediately constructing their desired object is the best approach to
avoid accidental interference from other unit tests. This still holds even if the setup and tear-down
phases of the unit tests allow sharing OpenFOAM cases between tests, which is often the case. An
example of this approach is demonstrated in Lst. 11 in the case study section, Sec. 4.2, configuring the
dynamicFvMesh class through the use of a Foam::IStringStream object, which can be constructed from
a string and can be used to generate the configuration dictionary, which dynamicFvMesh required for this
class. Note that this approach also makes the required content of such configuration dictionaries very
clear and keeps them up to date.

2.6.2. Isolate functionalities. An important technique for improving code modularity is to decouple im-
plementation from complex data structures by imlementing kernel functions. For OpenFOAM this
could mean to implement free kernel functions that operate on pointer to scalar values instead of
opering directly on OpenFOAM-specific types, e.g., fvScalarFields. For instance, a free function
might work with a raw pointer to a contiguous memory block, such as an array or std::vector,
or follow a standard C++ pattern using begin and end iterators. This approach is demonstrated in
Lst. 1, where the function transform() applied to the OpenFOAM data structure volScalarField,
uses underneath a free function, here called transformKernel(), which requires only the begin and
end iterator to the data structure and a raw pointer to a new scalar field to return the result 7.

7See https://github.com/hpsim/OGL/blob/v0.5.4/unitTests/test_HostMatrix.C for an actual implementation of this ap-
proach.

https://github.com/hpsim/OGL/blob/v0.5.4/unitTests/test_HostMatrix.C
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1 template<class iter>
2 void transformKernel(iter begin, iter end, scalar* data) {/*some code*/};
3
4 Foam::volScalarField transform(const scalarField& values) {
5 volScalarField out(...); // Construct new and empty volScalarField
6 transformKernel(values.begin(),values.end(),out.data());
7 return out;
8 }� �

Listing 1. Pseudo code implementing a test friendly transformKernel function

One advantage of this approach is that the transformKernel() can now be tested without instantiating
a volScalarField which would require a mesh object and object registry. Instead, std::vector, or any
other container type with a begin and end iterator can be used as shown in Lst. 2.�

1 SOME TEST() {
2 std::vector<scalar> in { 1.0, 2.0, 3.0};
3 std::vector<scalar> out ();
4 out.reserve(in.size());
5 transformKernel( in.begin(), in.end(), out.data());
6 SOME ASSERT(out);
7 }� �

Listing 2. Implementation of a unit test for the transformKernel function

3. Testing Tools for OpenFOAM

A vast ecosystem of unit testing libraries has emerged in the realm of computer science to assist
developers in this process. These libraries offer a standardized and well-organized framework for creating
and executing tests, simplifying the maintenance and scalability of test suites as the codebase expands.
Moreover, they provide a wide range of assertion macros and utilities, streamlining the process of verifying
code behavior and reducing the likelihood of overlooking edge cases. Given that OpenFOAM is primarily
written in C++, this discussion will focus on the Catch2 framework. Catch2 is by far not the only
commonly used unit testing framework for C++. However, the design of Catch2 allows a comparably
simple integration into OpenFOAM. Integrating Catch2 into an OpenFOAM code development process
can bring significant benefits regarding code reliability and maintainability. The different build systems
of OpenFOAM and Catch2 make integrating the two frameworks not straightforward. Also, executing
tests for functions or models executed in parallel with MPI is usually not trivial. At last the different
test cases, their setup and tear-down have to be managed as well. These issues are addressed in the
following sections, which first present the direct integration of Catch2 in an existing OpenFOAM project.
In the following subsection the foamUT utility is presented, providing a user-friendly and simple to use
framework, which handles these details in the background, allowing the user to concentrate on only
writing test code. The last section describes the OpenFOAM Benchmark Runner project, which allows
automatic execution of different test cases, taking care of the test case setup and execution considering
different hardware platforms and job submission tools, required, e.g., in an HPC context.

3.1. Catch2 and OpenFOAM. Catch2 is a comparably lightweight and easy-to-install unit testing
framework. However, the integration of Catch2 , or any unit testing framework, into OpenFOAM poses
several challenges, as mentioned in the introduction, see Sec. 2.5. These issues are addressed in the
following, and an example workflow is presented on how to couple OpenFOAM and Catch2.

The general setup of Catch2 tests consists of a main function and files containing the tests enclosed in
a TEST_CASE() macro. It is generally advised to keep the testing code (C++ compilation units defining
the test cases inside tests) separate from the target library code (which usually resides in src) [14]. An
example structure of an OpenFOAM project using Catch2 is visualized in Fig. 2. Here, the additional
tests folder is added alongside the src/ folder of the project, containing a src/ and cases/ directory.
The source code of the individual tests resides in the tests/src/ directory, and the OpenFOAM cases
required for execution are stored in the separate tests/cases/ directory. To reiterate, the OpenFOAM
cases are necessary as OpenFOAM tests often have to read information from the hard disk to construct
fundamental OpenFOAM classes, such as the fvMesh or the object registry. A minimal test case contains
at least a system/ folder with a controlDict. However, it may also include additional files required for
execution in the constant/ or an initial time state in a 0/ directory. At last, the Catch2 library has to
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be coupled with the test source code in tests/src/, which is depicted by the arrow from Catch2 to src/

in Fig. 2.

testssrc

srccases

main.C Tests.C

Catch2

OpenFOAM project

Figure 2. General setup of Catch2 with an OpenFOAM project.

3.1.1. Compiling Catch2 and OpenFOAM tests. The library Catch2 is compiled and installed with the
build-tool CMake, which cannot be easily integrated into the standard build system of OpenFOAM, called
wmake. Therefore, the unit testing framework must be installed prior to compiling the OpenFOAM test
cases using the CMake instructions given on the Catch2 GitHub page. As Catch2 uses standard CMake
functionalities and provides detailed installation instructions, a compiled and installed Catch2 library in
the path Catch2_Install_Path is assumed in the following. Here, the variable Catch2_Install_Path

denotes the path where Catch2 is installed, which can be specified by the user with CMake command
line arguments 8.

Once Catch2 is installed, it must be linked to the test codes of the OpenFOAM project. The test
code includes a custom main function, see Sec. 3.1.2, and the source files defining individual tests using
Catch2’s TEST_CASE() macro. To compile the custom main function with the OpenFOAM tests and
link them to the Catch2 library, the Make/options have to be adjusted. The Make/options file of an
executable is divided into two sections, first EXE_INC with all include statements and possible command
line arguments, and EXE_LIBS listing the required libraries. To include the Catch2 library in the linking,
the name of the libraries as well as their path has to be provided in the EXE_LIBS list, see Lst. 3. With
these additions, the test code can be compiled using the wmake function.�

1 EXE INC = \
2 −std=c++14 \
3 − ADD INCLUDES
4 ...
5 EXE LIBS = \
6 −L<Catch2 Install Path>/lib \
7 −lCatch2 \
8 −lCatch2Main� �

Listing 3. Example of Make/options file with Catch2. Note: As Catch2 requires at
least C++ standard 14, while OpenFOAM, up to version v2312, still uses C++ 11 with
the GCC compiler, the statement -std=c++14 has to be added to the EXE INC list.

3.1.2. Command line arguments of Catch2 and OpenFOAM. For many tests of OpenFOAM, the default
include statements of setRootCase.H, createTime.H, and createMesh.H are required. This standard
setup of the OpenFOAM environments requires reading the command line arguments given as the number
of command line inputs and the character array, char* argv[]. However, Catch2 also needs to parse
the command line arguments, which is in conflict with OpenFOAM. To achieve seamless interoperability
between Catch2 and OpenFOAM, an unambiguous delimiter (e.g., three hyphens) as a convenient way to
distinguish between arguments designated for Catch2 and those intended for OpenFOAM can be used, as

8For further details, see https://github.com/catchorg/Catch2

https://github.com/catchorg/Catch2
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exemplified in Lst. 4. An implementation of such a delimiter for integration of Catch2 and OpenFOAM
command line arguments is shown in the foamUT framework, which is presented in Sec. 3.2.�

1 ./testBinary [catch options] −−− [openfoam options]� �
Listing 4. Example of command line filtering for OpenFOAM and Catch2

While Catch2 includes a default main function (if linking against libCatch2Main.a), a custom main
function for Catch2 is required to separate the command line arguments for Catch2 and OpenFOAM. A
typical approach is to parse the command line and to create a new character array, which is then used as
an input for the functions in setRootCase.H of OpenFOAM. Examples of how this can be realized can
be found in the projects WENOExt9 [15] and foamUT10 [16] on GitHub.

3.1.3. Writing Catch2 test cases. Catch2 offers a variety of macros to write unit tests (for example,
REQUIRE to check boolean values or Approx for floating point comparison). A minimal example unit test
case for validation of the initialization of three components in vector::zero is illustrated in Lst. 5.�

1 TEST CASE("vector::zero initializes three components", "[tags]") {
2 REQUIRE(vector::zero.size() == 3);
3 }� �

Listing 5. Basic form of a Catch2 test case

In brief, Catch2 test cases are named and tagged (the first and second arguments to the TEST_CASE

macro in Lst. 5) for filtering at test execution, provided it can effectively process Catch2 arguments.
This functionality proves valuable for segregating various test execution modes, such as testing functions
in serial and parallel settings, as well as specifying the OpenFOAM cases for test execution if necessary.
One use case could be tagging all test cases using the standard OpenFOAM cavity tutorial as a basis
with the keyword [cavity]. Execution of the test library with the tag [cavity] would then execute all
tests that are compatible with the cavity mesh and case setup.

Another valuable test construct is TEMPLATE_TEST_CASE, which generates test cases for function or
class templates with specified template arguments. For example Lst. 6 presents a unit test case, which
expressively tests the constructor of List class templates for specific types, i.e. scalar and vector.�

1 TEMPLATE TEST CASE("List empty constructor", "[tags]", scalar, vector) {
2 REQUIRE(List<TestType>().size() == 0);
3 }� �

Listing 6. Basic form of a Catch2 test case for templates

3.1.4. OpenFOAM’s error handling. The default error-handling mode in OpenFOAM is to terminate with
fatal error codes upon critical failures. While this approach is suitable for production runs of CFD solvers,
it is suboptimal for unit-testing scenarios, where proceeding to the next test case after a fatal failure is
generally desired. Additionally, Catch2 provides support for exception matching, allowing developers to
ensure that a function throws errors in specific situations. To avoid aborting when an OpenFOAM Fatal
Error is encountered, it is recommended to enable exception handling before initiating the Catch2 session,
with FatalError::throwExceptions, as demonstrated in Lst. 7. This will allow the subsequent unit
tests to execute even if the current one throws an exception. OpenFOAM’s default behavior will result
in halting all unit tests because of the call to abort on Fatal Errors.�

1 int main(int argc, char *argv[]) {
2 // Use exceptions instead of aborting on FATAL ERRORs
3 FatalError::throwExceptions();
4 Catch::Session session; // Instantiate and start tests session
5 session.run();
6 }� �

Listing 7. Switching exception throwing in OpenFOAM

Unfortunately, the error handling of parallel test cases is not straightforward due to the handling of
exceptions, deadlocks, and time-outs in MPI. Therefore, any solution that does not lead to the termination
of the tests when an error occurs in parallel execution will be MPI-implementation specific [17].

9https://github.com/WENO-OF/WENOEXT/blob/master/tests/src/main.C
10https://github.com/FoamScience/foamUT/blob/master/tests/testDriver.C

https://github.com/WENO-OF/WENOEXT/blob/master/tests/src/main.C
https://github.com/FoamScience/foamUT/blob/master/tests/testDriver.C
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3.2. Unit testing OpenFOAM code with the foamUT framework. The foamUT toolkit represents
a general-purpose unit testing solution tailored specifically to OpenFOAM projects [16]. Its primary goal
is to address the unique challenges developers face when testing OpenFOAM-based software, especially
in the context of the complex dependencies and build environments across different OpenFOAM forks
and versions.

A key feature of foamUT is its flexibility and ease of integration. Developers are responsible only for
writing their test code and specifying build options. The toolkit abstracts away common complexities
such as handling serial and parallel setups, providing generic OpenFOAM cases, and managing test
drivers. At the same time, it allows developers the flexibility to customize as needed to fit specific project
requirements. foamUT also promotes healthy testing practices, such as randomizing test inputs, which
helps to avoid bias in tests and to detect defects caused by unexpected inputs. Furthermore, it is optimized
for continuous integration (CI) environments by separating test program execution (testDriver) and its
dependencies from the production code in the target project (as shown in Fig. 3) as applications and
solvers destined to production use tend to demand a lot more resources and computation time.

An important aspect of foamUT is its compatibility across multiple OpenFOAM versions and forks.
This broad compatibility reduces the effort developers need to spend on adjusting their tests for different
OpenFOAM environments, enabling a unified approach to testing that works consistently across projects
if support for multiple forks is desired. foamUT is a framework that provides a standardized way to
manage Catch2 and write tests for OpenFOAM functions and classes. The general workflow for unit
testing with foamUT is shown in Fig. 3 and comprises several steps11.:

(1) Develop the unit test code, tagging each test unit with either [serial], [parallel] or both, as
well as the target OpenFOAM cases to run on. The test code can reside in the target project
tree’s tests/targetLibTests folder. foamUT will then run tests in two passes, one in serial, and
the second pass in parallel with four (4) MPI ranks by default. A minimal unit test is given in
Lst. 8, which would be implemented, for example, in the myTests.C file within the project tree,
as shown in Fig. 3.

• The standard foamUT test drivers initialize some global variables in a consistent way with
their instantiation in OpenFOAM solvers, including the Time and command-line argList

objects, as demonstrated in Lst. 8.
• Lst. 8 illustrates a unit test to ensure the time index starts at 0. This test is set up as a
dummy one to ensure the correct functioning of foamUT with the used OpenFOAM version.
In particular, this unit test showcases some of the most important foamUT conventions,
mainly using test case tags to specify the OpenFOAM cases to run the test on (e.g. the
cavity case, which is included in the testing toolkit), and parallel execution tags, so the
unit test will run both in serial and parallel modes.�

1 extern Time* timePtr;
2 extern argList* argsPtr; // not used in this snippet
3 TEST CASE("Check time index", "[cavity][serial][parallel]") {
4 Time& runTime = *timePtr;
5 REQUIRE(runTime.timeIndex() == 0);
6 }� �

Listing 8. Example timeTests.C unit test file using foamUT conventions

(2) Developers are also required to provide Make/{files,options} to link test units against target
libraries such as libOpenFOAM.so.

(3) foamUT needs to be cloned into a separate directory outside of the project tree, usually in a
temporary location. A simple git clone is sufficient to achieve this (The important bits from
foamUT repository structure are illustrated in Fig. 3).

(4) The developer must copy, or symlink, library test code to foamUT/tests. This approach enables
the toolkit to execute both the project-specific tests and the default tests, which make sure foamUT
is compatible with the OpenFOAM version the user is using. However, the latter can be easily
removed if they are not required. Figure 3 also shows how tests/targetLibTests folder, which
contains the actual test code (myTests.C in this example) and the corresponding Make folder, is
sym-linked inside tests folder from the foamUT repository tree.

(5) foamUT provides a default shell-case with a simple ”lid-driven cavity” mesh, which can be used
to run the tests on without further developer efforts. If custom OpenFOAM cases are required

11Further detailed information can be found in the GitHub Wiki: https://github.com/FoamScience/foamUT/wiki

https://github.com/FoamScience/foamUT/wiki
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to run the tests, the developer then needs to copy them into the cases folder in the foamUT tree
before attempting to run the tests (Right hand side of Fig. 3).

(6) Executing Alltest script (from the foamUT repository tree in Fig. 3) will iterate over all provided
OpenFOAM cases and run corresponding unit tests both in serial and parallel modes.

Target project

src/targetLib tests/targetLibTests

myTests.C

Make

foamUT

tests

exampleTests

cases

cavity

Alltest

OpenFOAM project tree foamUT repository tree

symlink

li
n
k
s
ag
a
in
st

What users of foamUT need to provide in their project tree

(1)

(2)

(3)

(4)

(4)

(5)

(6)

Figure 3. Default unit-testing workflow with foamUT. Numbers represent the different
workflow steps, files and folders are represented by boxes with and without earmarks
respectively, and solid arrows indicate the contents of a folder.

Adhering to the guidelines depicted in Fig. 3 ensures that a fresh testing environment is deployed each
time the Alltest script is executed. This practice helps maintain a clean project tree, as the project only
needs to manage the actual test code without the need to include foamUT, any ”test driver”, or Catch2
libraries as dependencies. Furthermore, this workflow is well-suited for Continuous Integration (CI) tasks
since the only prerequisite is to create a container with OpenFOAM installed that can compile the target
libraries.

3.3. Setup and Tear-Down of Test Cases with OBR. In addition to the integration of Catch2, or
other unit testing software, in the OpenFOAM development workflow, setup, tear-down and management
of the test cases pose an additional challenge, see Sec. 2.5. Often, several test cases have to be managed
and set up properly for each unit or integration test, e.g., by modifying the dictionary files for the
respective tests. Further, benchmarks may be conducted on different hardware platforms to ensure
functionality and good performance for different hardware vendors. This is particulary challenging in
an HPC context which requires the use of job submission systems like slurm. While the aforementioned
points can, in principle, be handled by ordinary shell scripts, in practice, these shell scripts are often hard
to develop, maintain, and extend. Thus, to simplify setting up different integration test cases and handle
the benchmark workflows’ complexity while ensuring the benchmark results’ reproducibility, a software
utility named OpenFOAM Benchmark Runner (OBR) [18] has been developed.

3.3.1. OBR workflow. The basic workflow of creating, running, and post-processing parameter studies
with OBR is shown in Fig. 4. All OBR workflow steps, e.g., modifying the blockMeshDict file or setting
up different linear solver in the fvSolution file based on a base case, are defined via a YAML workflow
file (see left-most block in Fig. 4). This separates the desired outcome, for example, setting the endTime
of a simulation to a specific value, as shown in Lst. 9, from the required steps or code to achieve this
goal. While the user is responsible for defining the required state, OBR is responsible for implementing an
approach to reach the required state, for example, by implementing functionality to modify OpenFOAM
dictionaries on disk.
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1 − controlDict:
2 endTime: 1.0� �

Listing 9. Required YAML workflow file entry to set the endTime to 1.0

To enable machine-specific workflows, the YAML workflow file can contain references to environment
variables using the ${{env.VARIABLE_NAME}} notation. This allows to consider machine-specific proper-
ties, like the number of cores per node for the domain decomposition. The YAML workflow files are copied
to the target machine or kept in a dedicated test folder in case of integration tests with GitHub actions.
Based on the encoded workflow, on the execution of obr init, OBR creates a directed acyclic graph
(DAG) of jobs. Each job is represented by a subdirectory with a unique identifier in a workspace folder,
the desired target state, and contains the required simulation case files. When obr run -o generate

is executed, OBR is responsible for setting up the OpenFOAM cases to the target state by executing
certain operations such as fetching the base case, running blockMesh to generate a computational grid,
manipulating dictionary file entries to set up simulation properties such as solvers. After the setup of the
individual cases obr run -o runParallelSolver and obr submit -o runParallelSolver execute, the
solver runs either locally or via an automatically generated submission script, e.g., for slurm. obr status

checks the status of individual cases and stores properties such as latest time step, execution time, etc.
in a cache file to make it retrievable via obr query and OBRs python API. Finally, results can be post-
processed by applying post-processing scripts to all eligible cases, including parsing of the log files (see
right-most block in Fig. 4). After the post-processing step, general simulation properties, the number

Figure 4. Case generation, execution, and post-processing workflow with OBR, showing
different stages of a typical workflow on multiple HPC cluster and typical operations.

of iterations spent in a specific linear solver, or the timestep continuity errors can be accessed via obr
queries. For the integration test, the --verify-against=name.json option of obr query compares the
output of the query command to a given name.json file.

4. Case Studies

The previous sections elaborated on the theoretical background, defining test types, workflows, and
use of the test framework Catch2, foamUT and OBR. The following section presents three cases to provide
insight into how this can be applied to real-world problems. The first part presents the WENOExt
library [15, 19], which uses Catch2 for unit and integration testing. However, the necessity to write a
custom main function for the tests and the rather uncommon use of CMake for OpenFOAM projects to
compile the library, motivates the foamUT project explored in Section 3.2, here applied to the second case
study a load-balanced adaptive mesh refinement library (blastAMR). The last part presents a different
testing approach for the OpenFOAM Ginkgo Layer (OGL) project, combining the OBR software library
with the GitHub actions workflow to conduct integration tests considering various case setups and library
features.
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4.1. Catch2 case study: The WENOExt library. The open-source library WENOExt, which intro-
duces Weighted Essentially Non-Oscillating schemes to OpenFOAM [15,19], uses Catch2 to run unit and
integration tests 12. Following the proposed directory structure of Fig. 2, a tests directory is present at
the root of the project. Within this directory resides the src folder containing the custom main function,
as well as the individual tests. In this project, the Catch2 library is included as a git sub-module and is
installed within the project structure. Further, the tests folder contains a script to run the tests and a
report folder in which the results of the tests can be visualized as a report in HTML format.

The test library of WENOExt includes unit tests for fundamental functions, e.g., a new List3D class,
special math functions required for the WENO library, etc. Additionally, integration tests to test the
integration of WENOExt into OpenFOAM’s divergence operator, e.g., with the advection of a slotted
disk, are included. These test types validate the accuracy of the scheme by calculating the numerical
diffusion of a scalar field in a pure advection case and constitute an example of method of manufactured
solution (MMS) by comparison to an analytical function where the derivative is computed precisely. The
integration and accuracy test cases require different case setups, e.g., a 2D and 3D case for the advection
with different boundary conditions. Hence, not only one OpenFOAM case but several are included in the
Cases directory. As all tests are compiled into one single executable, the execution of the different test
types is managed using Catch2 tags. This motivates the introduction of a shell script to run the tests,
which handles the execution of the tests with their Catch2 tags in the matching OpenFOAM case in the
Cases directory.

The aforementioned challenges of writing a custom main function, as discussed previously in Sec. 3.1.2,
are addressed by using a global variable of type Foam::argList* to mimic the behavior of setRootCase.H
and make it available to all test cases. An example of how a TEST_CASE() can look like is shown in Lst.
10.�

1 // include statements
2 #include "globalFoamArgs.H"

3 ...
4
5 TEST CASE("WENOUpwindFit Test","[upwindFitTest]") {
6 // Setup OpenFOAM environment
7 // Replace setRootCase.H for Catch2
8 Foam::argList& args = getFoamArgs();
9 #include "createTime.H" // create the time object

10 #include "createMesh.H" // create the mesh object
11
12 ...
13 }� �

Listing 10. Example test case of WENOExt to create the OpenFOAM environment
with a fvMesh and Time object. See the WENOUpwindFit-Test.C source code of WE-
NOExt.

The option to execute parallel runs is included with an additional Catch2 command line argument, using
the cli parser of Catch2. However, parsing additional OpenFOAM arguments is not supported by this
main function. The rather complicated handling of command line arguments and different test cases
within one executable motivates the use of the foamUT tool as an alternative simple-to-use tool, which
handles these details in the background, allowing the user to concentrate on the writing of tests.

4.2. foamUT case study: A load-balanced adaptive mesh refinement library. In this example, the
blastAMR library, a port of adaptive mesh refinement (AMR) functionalities from blastFOAM [20], is tested
using foamUT. These unit tests ensure that functionality remains consistent with the original library. A
primary focus is verifying that mesh.update() correctly handles both refinement and unrefinement, which
are tested on different OpenFOAM mesh types composed of combinations of polyhedral, hexahedral, 2D,
or 3D elements.

The tests begin by refining cells in a stationary box and checking that mesh.update() produces the
expected cell count. After moving the box, the code tests whether the new location refines appropriately
and the old mesh location coarsens. Tests cover key parameters, including:

• Maximum refinement level, since different refinement levels might be treated differently by the
library code

• Refiner engine type. Only the polyhedral refiner is tested extensively.

12https://github.com/WENO-OF/WENOEXT

https://github.com/WENO-OF/WENOEXT
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• Load balancing switch (Checks with and without load balancing)�
1 // Info : TEST CASE, GENERATE, and REQUIRE are all Catch2 macros
2 TEST CASE ( "Check refinement/unrefinement polyhedral AMR/LB functionality",
3 "[hex2D][hex3D][poly2D][poly3D][serial][parallel]" ) {
4 // STAGE 01: Setup required state
5 word refiner = GENERATE("polyRefiner");
6 word balance = Pstream::parRun() ? GENERATE("no", "yes") : GENERATE("no");
7 label nBufferLayers = GENERATE(1, 2);
8 label maxRefL = GENERATE(1, 3);
9 // Supported constant/dynamicMeshDict entries

10 IStringStream is(
11 "dynamicFvMesh adaptiveFvMesh;"

12 "balance "+balance+"; refiner "+refiner+";"
13 "lowerRefineLevel 0.01; unrefineLevel 0.01;"

14 "nBufferLayers "+Foam::name(nBufferLayers)+";"
15 "maxRefinement "+Foam::name(maxRefL)+";"
16 );
17 // Create mesh object by reading the input string stream
18 IOdictionary dynamicMeshDict(
19 IOobject(
20 "dynamicMeshDict", runTime.constant(), runTime,
21 IOobject::NO READ, IOobject::NO WRITE
22 ), is
23 );
24 dynamicMeshDict.regIOobject::write();
25 #include "createDynamicMesh.H";
26 // Record initial number of cells, boxCells is a cellSet
27 label origRefBoxNCells = returnReduce(boxCells.size(), sumOp<label>());
28 // STAGE 02: Run testing code
29 setFieldValues();
30 for(label i = 0; i < maxRefL; i++) {runTime++; mesh.update();}
31 // Check the refined box again with a cellSet
32 label newRefBoxNCells = returnReduce(boxCells.size(), sumOp<label>());
33 // STAGE 03: Check for test conditions
34 REQUIRE(newRefBoxNCells >= 4 * origRefBoxNCells);
35 }� �

Listing 11. Example unit test case for checking correct load-balanced AMR funtionality
depending typical use cases. The unit test is set to run both in serial and in parallel,
following the [serial][parallel] tags , on custom OpenFOAM cases which provide
combinations of hexahedral and polyhedral meshes.

An example unit test is shown in Lst. 11, in addition to testing the functionality, it also clarifies what
settings are supported by the load-balanced adaptive mesh refinement mechanism and their well-tested
value range, hence the unit test acts as an up-to-date documentation for the target class. The test
parameters, if any, are incorporated at a test-case level, and generators are usually used to produce a
matrix of test cases with a minimal amount of code, as illustrated by using the GENERATE macro in Lst.
11. With Catch2, each generated branch of the test case executes the tested functions in an isolated
sandbox, where other branches’ environments and results do not interfere with each other, with the
selected parameters and evaluates passing conditions.

4.3. Integration testing and benchmarking of the OpenFOAM Ginkgo Layer (OGL). The
following section discusses the automation of integration testing and benchmarking of the OpenFOAM
Ginkgo Layer13 (OGL) [21] with the software library OpenFOAM Benchmark Runner (OBR)14 [18]. An
issue arising with OpenFOAM testing is to ensure that the test cases are in a proper state prior to test
execution. This may include mesh generation with blockMesh and decomposition of the mesh or the clean
up of generated files and modified dictionary entries. This is of particular importance for benchmarks
where the mesh size or time steps are varied for the same test case, hence requiring modification of the
files stored on disk within the test case. This and related problems are tackled and solved by the OBR
software presented in the following section using OGL as a case study.

13https://github.com/hpsim/ogl
14https://github.com/exasim-project/obr

https://github.com/hpsim/ogl
https://github.com/exasim-project/obr


128 J. W. Gärtner, G. Olenik, M.E. Fadeli, L. Petermann, A. Kronenburg, H. Marschall, and H. Anzt

OGL is an external plugin for OpenFOAM that allows offloading of the linear solver to GPUs facil-
itated by the Ginkgo library. Hence, ensuring correct behavior is crucial for valid simulation results.
To fulfill this requirement and guarantee code quality standards throughout the development process,
OGL uses GitHub actions functionality15 as the principal test environment, responsible for executing
the test runs. Here, several test types, like static tests to ensure correct code formatting and reduce
typos, unit, and integration tests are executed. The different test workflow runs are specified by YAML
files stored in a designated .github/workflows folder and are typically executed whenever a new pull
request is opened or a set of commits is pushed to the repository on the GitHub server. The dis-
cussion in this case study, however, will focus on the setup and execution of the integration tests of
OGLs CI/CD pipeline. The test pipeline is defined within the .github/workflows/build-foam.yml

and .github/workflows/integration-tests.yml files, and is comprised of first building OGL against
different versions of OpenFOAM, and only after a successful build the integration tests are executed.
Fig. 5 shows a screenshot of the build matrix and the dependencies between different jobs. It can be
seen that, at first, the build matrix is created by reading path and version information from a file and
emitting a JSON dictionary, which is used within all subsequent jobs. After the creation of the build
matrix the build jobs are executed, which compile OGL against. In the screenshot, two build jobs are
shown, build-v2212 and build-10, corresponding to ESI v2212 and OpenFOAM Foundation version 10 of
OpenFOAM. Only if the build test succeeds the integration tests are executed, which consist of two sub
jobs for each build, namely the setup of the test cases and the execution and verification of the simulation
results.

Figure 5. Screenshot of the build and integration test workflow for OGL using GitHub
actions, showing the setup, build, and unit and integration test stages.

For the integration tests of OGL, the following setup is implemented. The required YAML workflow
file is stored as cavity.yaml in the test sub-folder and an excerpt of this file is given in Lst. 12.
The case defines the base from which the parameter variation is built, here the cavity case in the
incompressible/icoFoam tutorial folder. After copying the base case into the workspace folder, several
operations are executed defined by the post_build section. This includes adding libOGL.so to the list
of loaded shared objects, executing blockMesh, and decomposing the case. After the base case is fully
set up, all variations from the variation section are applied. For brevity in Lst. 12 only one variation
is shown, changing the solver for the pressure execution to GKOCG.

The required steps for executing the GitHub action workflow for OGLs integration tests are summarized
in Lst. 13. However, Lst. 13 is merely a simplification of .github/workflows/integration-test.yml
contents since the original workflow is split up over several steps and includes caching of files and folders
to avoid unnecessary regeneration of files and folders across different workflow runs.

The last command in Lst. 13 shows a filtered query, which checks the global state of the simulation,
the continuity errors, and the Courant number of all cases that satisfy the filter predicates and compares
it against a set of criteria defined in ${{matrix.Case}}_validation.json file. Here, filters are used
to select only a subset of the integration tests at once in order to validate from simple cases, i.e., with-
out preconditioner and default matrix format, to more complex cases, i.e., with preconditioner, other
solver, and different matrix formats. The validation file can employ the json-schema16 format, which to
specify a rich set of criteria, e.g., checking if a numerical value is present and within a given range, to

15https://github.com/features/actions
16See https://json-schema.org

https://github.com/features/actions
https://json-schema.org


Testing Strategies for OpenFOAM Projects 129

validate against. In summary, a workflow run is only considered to be successful if the compilation of
OGL against different OpenFOAM versions succeeds, the converted and exported matrices pass a basic
plausibility test, and the simulations executed with different solver properties run to completion with
appropriate CFL number and continuity errors.�
1 case:

2 type: OpenFOAMTutorialCase

3 solver: icoFoam

4 domain: incompressible

5 case: cavity/cavity

6 post_build:

7 - controlDict:

8 libs: [libOGL.so]

9 - blockMesh

10 - decomposePar:

11 method: simple

12 numberOfSubdomains: 2

13 variation:

14 - operation: fvSolution

15 schema: "linear_solver /{ solver}"

16 values:

17 - set: solvers/p

18 preconditioner: none

19 solver: GKOCG

20 executor: reference

21 ...� �
Listing 12. Example OBR case YAML file encoding a parameter study with differ-
ent linear solver�

1 source /root/OpenFOAM/${{inputs.path}}/etc/bashrc
2 mkdir ${{matrix.Case}} && cd ${{matrix.Case}}
3 obr init −−config ${{matrix.Case}}.yaml
4 obr run −o generate
5 obr run −o runParallelSolver
6 obr status
7 obr query \
8 −q global −q continuityErrors −q CourantNumber \
9 −−filter preconditioner==none \

10 −−filter matrixFormat==Coo \
11 −−filter global==completed \
12 −−validate against=${{matrix.Case}} validation.json� �

Listing 13. Example OBR workflow including validation of results

5. Conclusion

This work emphasizes the critical role of systematic testing in developing robust research software
within the OpenFOAM community. By examining and categorizing common testing types from the
software engineering field, this paper provides a structured framework that supports testing in Open-
FOAM projects. Key challenges specific to OpenFOAM, including complex dependencies, file-based
setup, and limited automation capabilities, were identified. Addressing these challenges, this work intro-
duced two tailored tools: the foamUT framework, which simplifies unit test integration, and the Open-
FOAM Benchmark Runner (OBR), which facilitates setup and execution for comprehensive integration
and performance testing.

The utility of these tools is illustrated through three case studies: the WENOExt library’s direct
integration of Catch2 for unit testing, the application of foamUT in a load-balanced adaptive mesh
refinement tool, and OBR’s application in benchmarking for the OpenFOAM Ginkgo Layer. Each case
study demonstrates the practical value of these tools, showing how they address common barriers to
testing and enable consistent, automated validation across OpenFOAM projects.
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In conclusion, this work aims to elevate testing practices in OpenFOAM by lowering barriers to entry
and providing tools that make testing both accessible and effective for developers. By supporting modular
and automated testing workflows, this approach contributes to enhancing the reliability, maintainability,
and scalability of OpenFOAM-based software. Future work could extend these tools to accommodate
more advanced HPC environments, further automate testing workflows, and explore additional integration
with existing HPC infrastructure.
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