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Abstract. The scope of this paper is to present the design and verification of an integrated OpenFOAM
membrane fluid-structure interaction (FSI) solver for small deflections, which employs the finite volume

method (FVM) for solving the flow field and the finite area method (FAM) for solution of the membrane

deflection. A key feature is that both the fluid and the solid solver operate on a common mesh geometry
and are included into a single executable. Although the scope of applicability is narrow due to limitations

of the membrane solver at its current state, positive verification results prove the practicability of the

design, which allows for lightweight implementation as well as simple data transfers and post-processing.

1. Introduction

Fluid-structure interaction is a generic term for settings in which the flow-imposed load on a structure
leads to its deformation. The flow field itself may in turn be influenced by the structural deformation. If
no notable so-called back-coupling on the flow field occurs, the setting is termed one-way coupling, while
two-way coupling describes cases where the structural deformation has a non-negligible effect on the flow
field. In many cases, the slenderness of surface structures implies a comparatively small stiffness and
therefore high deformability, thus making them interesting for FSI studies. Numerical treatment of the
said problems is usually demanding regarding computational requirements. Consequently, it has been
gaining momentum in the past decades due to the increasing computing power available to the scientific
community. This is reflected by the diverse range of publications that cover simulations of FSI problems
involving surface structures [1–6]. In particular the work on FSI of membranes and plates by Torlak [7],
who used a control-volume approach for discretization of the structural part, bears analogies to the work
presented in this article.

Common terminology differentiates between FSI solvers of partitioned and monolithic type [8,9]. The
former rely on distinct solver applications for fluid and structural part, that exchange boundary conditions
at the coupling interface, while the latter treat both field problems combined in a single matrix. Usually,
monolithic solvers stand out due to superior stability, but their general implementation causes limitations
in applicability to specific field problems. The partitioned solution approach, on the other hand, allows
for specialized solvers and meshes for fluid and structural part. In addition, a coupling tool is required
for data transfer between the coupling participants, for handling communication and for interpolation
between the different meshes. Time advancement in partitioned solvers can be approached in various
ways. With small time steps, a single solution of fluid and structure field within each time step may be
sufficient without compromising stability, which is termed weak coupling. More economically, strong or
implicit coupling can be used with larger time steps while maintaining stability. In this case, within each
time step, a nested coupling loop is executed with repeated solution of both coupling participants and
exchange of boundary conditions, until compatibility between fluid and solid field is achieved. Due to
the artificial added mass effect [10–12], special care must be taken when computing FSI with (nearly)
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incompressible fluids. Added mass refers to the fluid moving with the structure. Since this additional
inertial contribution is not known beforehand during the solution process, it is over- or underestimated.
The estimation error is termed artificial added mass and may lead to peaks in the pressure field and
subsequently numerical instabilities.

The scientific community has used OpenFOAM for partitioned FSI investigations targeting a range of
challenging problems. While the OpenFOAM software suite originally focused on flow simulations, also
capable large-deflection structural FVM solvers [13] have been implemented. Hence, it is possible to use
the framework both for the structural as well as for the fluid part, as is also intended in this article. In
2010, Jasak et al. studied a well-known FSI test case [14], initially proposed by Hron and Turek [15].
Among the newer publications treating both fluid and solid part with OpenFOAM, the work of Tuković
et al. stands out, covering a wide range of test cases [16]. Furthermore, code-specific coupling tools or
general coupling toolkits like preCICE [17] allow for partitioned FSI with virtually all kinds of solvers,
under the condition that a corresponding interface exists.

Apart from the core FVM implementation, the OpenFOAM library features a finite area discretiza-
tion method. Similar to the FVM, the FAM is a control-volume-based discretization approach, with
the control volumes being discrete areas on a surface mesh. It is described in a detailed manner by
Tuković and Jasak [18]. In OpenFOAM, both FVM and FAM are based on co-located computing nodes,
placed at the volume center or area center, respectively. As a result, the framework can handle finite
volume discretizations and finite area discretizations on a single mesh geometry, with the finite area mesh
consisting of control volume surfaces from the finite volume mesh. This predestines the OpenFOAM
library for the implementation of lightweight solvers for coupled surface and volume field problems. In
the past, this capability has already been used for simulation of shallow granular flow [19], surface ten-
sion influence [18, 20] and thin-film flows [21, 22]. In addition, more recent OpenFOAM versions include
FAM Kirchhoff plate solvers, which were first introduced by the solids4foam toolbox [23], allowing the
computation of simple surface structures.

The scope of this publication is the presentation and implementation of a partitioned approach to FSI
using the OpenFOAM framework. It is integrated into a single executable, using an FAM implementation
of a membrane equation solver for the solid part and an FVM-based fluid part. Due to its design, it
comprises some advantageous attributes of a monolithic solver. Subsequent to the description of the
implementation in the following section, verification test cases and corresponding results will be presented.

2. Coupled Solver Implementation

Using the FVM for computation of a flow field, and the FAM for computation of a deflecting membrane,
OpenFOAM can be used to perform fluid-structure interaction simulations using a single mesh geometry
for both fluid and solid field. Other than in a monolithic solver, the finite area and finite volume
discretizations lead to decoupled systems of equations that are solved independently and sequentially.
The key difference to the common partitioned solution approach is the use of a single mesh geometry and
the combination of both solvers in one application, obviating the need for inter-process communication.
On the contrary, all information about the solution progress as well as field data is readily available
to both solver subroutines. Fig. 2 depicts the adopted integrated FSI solver setup in contrast to the
common partitioned approach with separate solver executables in Fig. 1. The coupled FSI solver under
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consideration was implemented based on the incompressible pimpleFoam solver for dynamic meshes,
extended by a coupling loop and an FAM membrane equation solver.

2.1. Flow Field Solution. Fluid flow is described by the specific transport quantities mass and mo-
mentum. The resulting equations are known as Navier-Stokes equations. On a moving grid, fluxes due to
boundary movement have to be considered in the control volume balance. Equations (1) and (2) display
the compressible continuity and Navier-Stokes equations for a control volume boundary moving at the
velocity ub. ∮

∂V

ρ n · (u− ub) dA = 0 (1)

∂

∂t

∫
V

ρu dV +

∮
∂V

ρu n · (u− ub) dA =

∮
∂V

n · τ dA−
∮
∂V

n p dA (2)

Pressure-velocity coupling is achieved using a combination of PISO [24] and SIMPLE [25] approaches,
which is termed PIMPLE in OpenFOAM and iterates through two nested loops within each time step.
An outer loop resolves the convective non-linearity, while an inner loop includes successive pressure-
corrections. Pressure-velocity coupling according to the PIMPLE scheme is versatile and stable for a
wide range of flows, even with comparatively large time steps. By reduction of the number of iteration
of either of the loops to one, the basic SIMPLE or PISO behavior can be recovered.

2.2. Membrane Equation Solution. The vital attribute of surface structures like membranes is the
low thickness. Their extension in thickness dimension is by orders of magnitude smaller than in the
other dimensions. Adopting the assumption of simple distributions (e.g. constant or linear) for stresses
and strains in thickness direction permits the integration to resultant quantities, which simplifies the
governing equations from three to two-dimensional form. This in turn implies a considerable reduction in
the computational effort to solve for their deflection and avoids difficulties of large aspect ratio meshes.
The most elaborate theories on surface structures apply for shells with arbitrary curvature in three-
dimensional space, as depicted in Fig. 3. Within this study, only very simple plain membranes with
constant thickness and subject to only normal loading are considered. Membrane theory assumes that
the thickness is especially low, such that bending moments — in contrary to e.g. plate or shell theory —
are negligible. Instead, only forces due to pretension and curvature counteract the imposed normal load,
expressed here as static pressure p, as shown in Fig. 4. The membrane equation for small deflections
is given in integral form as equation (3), with the pretension σ0, density ρ and thickness d, while m

Figure 3. Warped 3-dimensional surface structure (grid) with collapsed 2-dimensional
representation (grey)
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Figure 4. Forces acting on a membrane
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denominates the bi-normal vectors of the edges of the finite area mesh.∮
∂A

m ·∇w dL = −
∫
A

p

σ0 d
dA +

∫
A

∂2

∂t2

(
ρ

σ0
w

)
dA (3)

At the boundaries, a fixed support is prescribed by applying a zero deflection Dirichlet condition. As the
OpenFOAM FAM implementation provides implicit discretizations for both the Laplacian operator and
the second time derivative, the membrane equation can be solved directly for the deflection w using the
code:�

1 solve
2 (
3 fam::laplacian(w)
4 ==
5 − p/(sigma0*d)
6 + fam::d2dt2(rho/sigma0, w)
7 );� �

The chosen discretization for the Laplacian was Gauss linear corrected. For the second time derivative
in transient cases, only Euler was applicable, which is of first order accuracy. In stationary cases, the
time discretization scheme was set to steadyState.

2.3. Common Mesh and Data Transfers. Fig. 5 shows a sketch of a finite volume mesh with an
overlaid finite area mesh. The finite areas constitute boundary faces of the finite volume mesh, and the
finite area boundary consists of lines between mesh vertices. Centroids of the finite area computing cells
are marked as black dots. They coincide with the boundary face centers of the finite volume mesh, which
renders data transfers trivial, since no interpolation is necessary. Furthermore, conservation of transferred
quantities is intrinsically guaranteed.

On the downside, independent refinement of the finite volume and finite area meshes is not possible. As
the finite area mesh is two-dimensional only, it may be assumed that the number of degrees of freedom
in the three-dimensional finite volume mesh by far exceeds the number of solid degrees of freedom.
Consequently, the computational requirements for the solid part likely are comparatively low, even if
the mesh density as dictated by the fluid part is higher than actually required for sufficient accuracy
of the solid part. Therefore, the lack of independence in mesh density is deemed to be an only minor
disadvantage for coupled solvers adopting the presented design.

2.4. Mesh Adaption. The OpenFOAM library contains a range of dynamic meshing capabilities, in-
cluding topological changes [14,26]. For the scope of this study, only small deflections of the membrane,
represented by a boundary of the three-dimensional finite volume mesh, are considered. Therefore, mesh
smoothing is sufficient in order to absorb the boundary deformation without compromising accuracy or
stability due to bad quality cells.

Figure 5. Cuboid finite volume mesh (light) with overlaid finite area mesh (dark).
Finite area central and boundary nodes are marked as dots and crosses, respectively
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The membrane deflection is computed at the area-centered finite area nodes and at the boundary
nodes placed on the outer boundary of the finite area domain. For mesh adaption, the first step is the
interpolation of the structural deflection to the mesh vertices constituting the finite areas’ corners. With
the surface mesh vertices deflection known after interpolation, the inner volume mesh has to be adapted
in order to smoothly absorb the boundary deflection.

There is a diverse range of different mesh smoothing methods for FSI with varying complexity and
achievable quality, based on spring analogy [27], radial basis functions [14,28,29], solid body elasticity [30,
31], or boundary deformation diffusion [2, 26,32].

A desirable property of mesh smoothing methods is to approximately conserve the boundary layer
resolution, such that the boundary movement is mainly absorbed by inner mesh cells with higher wall
distance and larger volume. Even at large deformations, diffusion-based smoothing approaches allow for
this by specification of the diffusion coefficient depending on the distance to the deforming boundary [26,
32]. The diffusion equation to be solved for the mesh movement x is given as equation (4).∮

∂V

Γ (n ·∇x) dA = 0 (4)

By choice of a large diffusivity Γ at locations where the mesh is to be preserved, and a small value
where the deformation is to be absorbed, the deformation can be favorably distributed. In this study,
the boundary wall distance method with linear dependence on the inverse distance was adopted, yielding
slightly better results in preliminary simulations than exponential or quadratic dependence.

2.5. Time Stepping and Coupling Loop. Fig. 6 outlines the solution procedure with outer time loop
and inner coupling loop. At start-up, the mesh and configuration of fluid and solid domain are read.
After the initialization step, the solver enters the time stepping loop, which itself contains different nested
loops. Each time step, in the inner coupling loop, the mesh is adapted and the solution routines for fluid
and solid field are called sequentially. Since the flow field causes the deformation of the membrane, the
fluid part is solved first. After the fluid solution, the updated values for the pressure field, acting as load
boundary condition on the membrane, are prescribed for the solution of the solid part.

Convergence of the inner coupling loop is achieved when a compatible solution of fluid and solid part
has been found. This is the case, when the participating solvers and the data transfers converge, i.e. the
deflection and its derivatives with respect to time as well as the surface load field are consistent between
fluid and solid part. Furthermore, a minimum and maximum number of coupling iterations may be
specified, such that advancement to the next time step may artificially be delayed or enforced. Although
this should ideally not be necessary, it may be useful during case setup when adequate values for the
convergence criteria have not yet been found. Weak coupling can be imposed by setting the maximum
number of coupling iterations to one and switching off relaxation of transferred quantities.

Initialize

t = t + ∆t
Predict Deflection

Adapt Mesh

Solve Fluid
Relax & Transfer Load

Solve Solid
Relax & Transfer Deflection

Converged?
No

Yes

Figure 6. Solution Algorithm
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In order to boost convergence of the coupling loop, both adaptive Aitken relaxation [33] and de-
flection prediction have been implemented, which have proven to be reliable improvements in the lit-
erature [2, 12, 34–36]. While other, usually more complex methods may yield even better results [8],
relaxation using Aitken method often provides reasonable improvements and is straight-forward to im-
plement into an existing coupling loop. Relaxation by a constant factor has also been incorporated for
comparison purposes. According to literature, the optimal value of the relaxation factor depends on
several characteristics of the treated problem [37], hence it cannot generally be expected to be as efficient
as more advanced techniques like adaptive Aitken relaxation.

Starting a time step with the previous time step deflection corresponds to zero order deflection predic-
tion (equation (5)) and gives a very basic estimate. With better predictions, substantial speedup of the
inner coupling loop can be achieved [34, 36]. Based on the assumption of linear or parabolic deflection
behavior with respect to time, the formulas for first-order and second-order prediction accuracy as given
in equations (6) and (7) for constant time step sizes can be obtained.

wi,pred = wi−1 (5)

wi,pred = 2wi−1 − wi−2 (6)

wi,pred = 3wi−1 − 3wi−2 + wi−3 (7)

Prediction of higher order may be prone to spurious high-frequency disturbances [8]. Hence, the ideal
order of prediction remains problem-dependent.

2.6. Convergence Criteria. In total, there are four boolean convergence flags: one for fluid and solid
solution each, and a further one for both of the exchanged boundary conditions, deflection and surface
load field. Convergence of the fluid and solid solvers is judged by the remainder after solution of the
discretized governing equations. In addition, compatibility between both participants must be achieved,
implying that data transfers must have converged. This is assessed by the change of the transferred
quantity fields between subsequent coupling iterations, which must be small compared to the change
between time steps.

In order to simplify the quantification by condensing the field differences into a single number, mathe-
matical norms of the difference fields are computed, such that the resulting condition for convergence may
be written as equation (8). Indices t mark time steps, while indices n stand for the coupling iterations
within a time step. The type of norm applied is denominated by the subscripts a and b.∣∣ϕt

n − ϕt
n−1

∣∣
a
<<

∣∣ϕt
n − ϕt−1

∣∣
b

(8)

Two norms adopted in the implementation are the maximum absolute norm (peak-to-peak value) and
the root mean square value (RMS), corresponding to a weighted euclidean norm. The latter bears the
advantage of giving a good representation of the average order of magnitude with emphasis on the larger
values. On the other hand, the peak-to-peak value corresponds to the upper bound of the absolute
differences, implying that although it may not be good at representing the mean order of magnitude, it
effectively prohibits smoothing out of unphysical peaks.

Convergence indication must work reliably in the sense that neither stalling nor premature convergence
indication should occur. While it is hard to find an indicator that works absolutely reliably, for this study
good results were obtained when adopting the RMS value for quantification of the change between time
steps and the maximum absolute value for quantification of the change between coupling iterations. This
ultimately leads to equation (9) for the relative error.

ϵrel =
max(abs(ϕt

n − ϕt
n−1))√

(ϕt
n − ϕt−1)2

(9)

The deflection field and its changes can be expected to be rather smooth, due to damping of the motion
by structural inertia. On the other hand, the load field, due to fine turbulent motions, is potentially more
prone to show individual local differences and therefore larger peak-to-peak differences between iterations
values, depending on the fluid velocity discretization. For the scope of this study, the convergence
criterion for the deflection was set to a relative error according to equation (9) of 0.0002, while for the
surface load field, a criterion as high as 0.2 had to be chosen in order to prevent significant delay in
convergence without noticeable gain in accuracy. In both cases, for the computation of the relative
errors, the computed transfer quantities without under-relaxation were used as reference, in order to
avoid erroneous premature convergence indication caused by strong under-relaxation.
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3. Test Cases Setup

Verifications were individually conducted for the membrane solver and for the coupled FSI solver. Well-
defined test cases on simple geometries were set up in order to allow the comparison and to reduce further
erroneous influences. For testing the membrane solution only, the coupled solver was configured to apply
a predefined load instead of fluid pressure from the neighboring finite volume cells on the membrane.

3.1. Stationary Membrane Test Case. For a range of stationary cases, solutions to the membrane
equation can be derived by analytically [38,39]. In order to check the stationary membrane solution, the
maximum deflection of a circular and quadrilateral membrane under uniform loading, occurring at the
center, is compared to analytical results. The formulas for membranes with diameter D or side length L,
respectively, are given in equations 10 and 11.

wmax,circ = 0.0625
pD2

σ0 d
(10)

wmax,quad = 0.0737
pL2

σ0 d
(11)

While the quadrilateral membrane employs a regular Cartesian grid, the circular membrane was dis-
cretized either with a semi-regular quad-dominant or with a completely irregular triangular mesh, as
depicted in Fig.7. The control area grid density indicates the fraction of the side length or diameter,
respectively, which was set as characteristic area (side) length for grid generation. By analysis of different
meshes, the required grid density for a given accuracy can be estimated.

3.2. Transient Membrane Test Case. In order to verify the transient behavior, a reference solution
was generated using ANSYS Mechanical and compared to the results obtained with OpenFOAM. A time
and space-independent load was applied onto a quadrilateral membrane of 1m side length without initial
deflection. Due to second-order accurate time integration, the reference solution was obtained using a
time step size of 4ms, while for OpenFOAM the time step size was set to only 0.25ms. The membrane
was modeled with a mesh of 40 times 40 SHELL281 second-order finite elements using ANSYS and 80
times 80 finite areas in OpenFOAM, respectively.

3.3. Membrane Solver Oscillation Test Case. The exact eigenfrequencies and normal modes of
quadrilateral membranes of side length L can be derived analytically [40] as given in equation (12).

fmembr =
1

L

√
σ0

ρ
(12)

Hence, from a comparison of analytical to numerical solution with varying time step sizes, the influence of
numerical damping on the time dependent solution may be assessed. The oscillation test case starts with
a deflection according to either the first or the third normal mode. From that on, without a load boundary
condition applied onto the membrane, the time-dependent deflection of the membrane is simulated.

The analytically derived first and third eigenfrequency for the quadrilateral membrane under consid-
eration are

feigen,1 = 5
√
2 Hz feigen,3 = 15

√
2 Hz

which corresponds to a cycle time of roughly 0.141 s and 0.047 s, respectively. Simulation runs resolving
each cycle with 100, 200, and 400 time steps give insight into the required time stepping size for a targeted
maximum numerical damping of the oscillation amplitude.

Figure 7. Meshes with a relative control area grid density of 10: quadrilateral mem-
brane, quad-based circular membrane and tri-based circular membrane (left to right).
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3.4. Coupled Solver Test Case. Other than for the stationary test cases, no suitable coupled problem
with a reference solution exists. Therefore, the FSI capabilities of the ANSYS software suite were relied
on for creating a reference solution for the academic test case described in the following.

Fig. 8 displays the cuboid domain geometry, which is aligned with the coordinate system. Very similar
fluid domain meshes with 0.5×106 and 0.56×106 control volumes were used for OpenFOAM and ANSYS,
respectively. The time step size was set to 0.05ms in all simulations. A nozzle of quadratic cross-section
of 0.04m side length points downwards on a quadrilateral membrane of 0.2m side length with a material
density of 1000 kgm−3. The outflow boundary is at one side of the cuboid. Fluid with a density of
1 kgm−3 and a kinematic viscosity of 10−4 m2 s−1 enters with a velocity of 20m s−1, leading to a nozzle
outlet Reynolds number of 8000. Although turbulence has to be expected under these conditions, turbu-
lence modeling was disabled, because differing details of turbulence model implementations might lead
to spurious deviations between the results of the OpenFOAM and ANSYS simulation. Deviations from
exact physical behavior were accepted in favor of good comparability between the simulation frameworks
and reduced computational requirements.

The geometry of the test case with central impingement at the membrane leads to shear forces likely
nearly canceling over the membrane in an integral sense. Hence, neglecting the shear forces in the
modeling of the solid part is supposed to be a minor source of error in the investigated setting.

Except for the structural part of the ANSYS solution with second-order accuracy in time, all compu-
tations were conducted with first-order accuracy in time, since no higher-order discretization scheme was
readily available for the FAM discretization of the second time derivative in the OpenFOAM membrane
equation solver. For spatial discretization, on the other hand, schemes of second-order accuracy were
chosen, in particular linear upwind for convection. The PIMPLE fluid solver configuration was set up to
use two pressure correction iterations, and as many as necessary outer iterations in order to fulfill the flow
convergence criteria. In line with suggestions from literature [2, 3], different configurations for deflection
transfer relaxation were tested, as specified in Table 2, while the surface load field relaxation was always
disabled by setting the relaxation factor to 1.

4. Results and Discussion

All results were obtained on desktop machines using a single processor core. As no dedicated computing
cluster was used, no wall clock time comparisons of the simulations are given, because these would not
necessarily reflect the computational cost.

4.1. Membrane Solver Stationary Test Cases. Fig. 9 shows the relative deviation between analytical
and numerical maximum deflection for a range of control area grid densities on a quadrilateral and circular
membrane. The results comply with the expectation that finer meshes lead to better results. For the
quad-dominant circular membrane, the error changes sign at a grid density of 20, causing an apparent
increase in accuracy for this data point. In general, regular grids as the one employed for discretization
of the quadrilateral membrane seem to be advantageous when compared to irregular grids. However, a
switch in discretization scheme of the Laplacian in equation (3) from Gauss linear corrected to Gauss
linear fourth, with potentially increased accuracy of the line-normal gradient, did not have an effect

Figure 8. Coupled test case brick geometry with inlet and outlet marked by arrows.
The membrane surface structure lies centered beneath the nozzle
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on the results. The reasons are not clear to the authors, but it may indicate that the error stems mainly
from the handling of boundary conditions and not from inside the finite area domain. In all three cases,
a deviation of less than 2% is reached with a control area grid density of as little as 20, making the
implementation seemingly good enough for a range of scenarios with moderate accuracy requirements.

4.2. Membrane Solver Transient Test Case. The results of the transient test case under constant
loading obtained with OpenFOAM in comparison to the results obtained with ANSYS is depicted in
Fig. 10 and 11. The former, displaying the central point deflection over time, shows that initially the
deviation between both curves is quite small, but accumulates over time. Apparently, a slight deviation
in oscillation frequency leads to a growing phase shift with increasing number of oscillation cycles. Apart
from that, also the amplitude appears to be damped in the OpenFOAM solution, although in general the
absolute value of the deflection is captured well. In Fig. 11, the snapshot of the cross-sectional deflection
after 140ms more clearly displays the differences across the width of the membrane. Due to different
scaling of the y-axis, the results appear more pronounced in Fig. 11 when compared to Fig. 10.

As the results from the membrane oscillation test case in the following section suggest, the differences
are likely due to the use of the highly dissipative first order Euler time discretisation which is used
in OpenFOAM, in contrast to the second order scheme in ANSYS. Considering that the deviations of
the OpenFOAM membrane solution to the ANSYS reference solution are initially small and accumulate
slowly over time, the authors conclude that the results are acceptable.

4.3. Membrane Solver Oscillation Test Case. Table 1 summarizes the findings of the oscillation test
cases conducted for the first and third normal mode. For two of the investigated cases, Fig. 12 exemplifies
the central point deflection over time, visualizing the varying amplitude damping depending on the time
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Figure 9. Stationary test case results for a range of control area grid densities. The
error drops with increasing density, and appears to depend significantly on the type of
mesh.
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Figure 10. Deflection over time for ANSYS and OpenFOAM solution. A slight phase
shift is apparent, and also the amplitude decays in the OpenFOAM solution.
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Figure 11. Comparison of deflection in cross-sectional view of ANSYS and OpenFOAM
result after 140ms. The ANSYS solution shows a higher fidelity.

Table 1. Amplitude decay for different configurations on a mesh with 30 control areas
along the side length

Normal Time step Relative amplitude Amplitude decay
mode size after 5 cycles per cycle
1st T1/100 ≈ 1.414× 10−3 s 37.2% 82.1%
1st T1/200 ≈ 0.707× 10−3 s 60.9% 90.6%
1st T1/400 ≈ 0.354× 10−3 s 77.9% 95.1%
3rd T3/100 ≈ 0.471× 10−3 s 36.5% 81.7%
3rd T3/200 ≈ 0.236× 10−3 s 59.7% 90.2%
3rd T3/400 ≈ 0.118× 10−3 s 76.3% 94.7%
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Figure 12. Oscillation test case results with central deflection over time for different
time step sizes

step size. In all cases, as expected for first-order accuracy in time, the damping due to numerical
error drops proportionally by reduction of the time step size. For higher normal modes, damping at a
given time step size is stronger, but apparently solely due to the relatively coarser resolution in time. The
relative spatial resolution of the half-wave – thirty finite areas for the first and ten finite areas for the third
normal mode – apparently has no effect. Hence, the significant damping can be attributed to the time
discretization of first order. In order to allow for higher accuracy at larger time step sizes, a discretization
with second-order accuracy for the second time derivative in the OpenFOAM FAM implementation is
desirable. Otherwise, for resolution of fine-scaled oscillations, the time step size dictated by alleviation
of numerical damping avoidably increases the computational cost.
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Table 2. OpenFOAM FSI results for different configurations

Deflection Deflection Coupling Iterations
Relaxation Prediction per Time Step
Aitken Second Order 2.54
Aitken First Order 3.93
Aitken Zeroth Order 5.29

Constant 1.00 No Dynamic Mesh 1.00
Constant 0.75 Second Order 4.72
Constant 0.95 Second Order 2.95

4.4. Coupled Solver Test Case. The coupled OpenFOAM FSI solver was run using several configura-
tions, in order to assess the impact of different coupling configuration parameters on coupling cycles and
on computation time, as shown in Table 2. Differences in the results among the OpenFOAM simulations
were negligible, except for the one-way coupling case without mesh deformation. This indicates that the
adopted convergence criteria for fluid and solid part as well as for convergence of data transfers were
chosen sufficiently strict.

The Courant number of the flow solution showed a peak value of around 1.2 with a domain average of
0.09 for fully developed flow. Maximum y+ values at the membrane were close to 2.4, while the average
was as low as 1.5. Since no turbulence modeling was used, this is deemed to not have any impact on the
simulation result. In all two-way coupled OpenFOAM cases, approximately 84% of the computing time
were spent for the flow field solution and the remaining 16% for mesh movement related computations,
including flux correction. The computing time spent for the membrane deflection and data transfer
between fluid and solid part was negligible. This confirms, that at least for this test case the mesh
dependency is to be considered only a minor drawback of the coupling approach.

In line with expectations, the results in Table 2 indicate that higher order prediction effectively de-
creases the total computational cost due to effective reduction of the number of required coupling itera-
tions per time step. Even though the time step size was quite low, second-order prediction proved notably
better than first-order prediction. Deflection relaxation using the Aitken method, on the other hand, only
provided an improvement of roughly 15% when compared to a constant relaxation factor close to one.
Albeit in literature conditions were described in which under-relaxation by a constant factor slightly
outperforms the Aitken method [3], most of the times it showed notable advantages when compared to
cases where a lower constant under-relaxation had to be applied for stability [2, 3, 35]. This suggests
that for general applications the Aitken method is preferable, since the additional computational cost is
negligible.

Fig. 13 compares the one- and two-way coupling results for the center point deflection over time along
with the reference solution computed using ANSYS. Interestingly, even though the relative deviation of
the membrane peaks at a maximum of only roughly 1%, already notable differences between two- and
one-way coupling (with and without dynamic mesh) become apparent. The one-way coupling solution
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Figure 13. Simulation results for central point deflection over time with one- and two-
way coupling. In spite of the relatively small absolute membrane deflection, two-way
coupling appears to be mandatory for accurate results.
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fails to replicate the dynamic movement of the membrane central point, not only with respect to the
amplitude, but also to fidelity of the movement. Even though the two-way coupling case does not
exactly replicate the reference solution, there is in general good agreement between the ANSYS and
two-way OpenFOAM results. The differences may at least partially be explained by the weaknesses of
the membrane solver revealed in the previous sections, especially by the use of the dissipative first-order
time scheme in OpenFOAM, in contrast to the second-order scheme applied in the structural solver of the
reference solution. Furthermore, deviations might be attributed to differences in implementation details
in the fluid parts.

In summary, the initially small and slowly increasing deviations indicate that the coupled solver in the
current state is applicable in the considered scenario for the prediction of the membrane motion. Due to
the rather special nature of the test case, it is hard to tell if there are further limitations, which remained
undiscovered in this study. For example, these might arise from shear forces acting on the membrane if
there is notable cross-flow. Nonetheless, it could be shown that the concept of an integrated FSI solver
according to the presented design is viable, although the current state suffers from several weaknesses.

5. Conclusion and Outlook

An integrated partitioned membrane FSI solver using OpenFOAM has been presented. It is based
on coupling of finite area and finite volume discretizations on a common mesh geometry for solid and
fluid part, respectively. The main advantage of the adopted integrated design into a single executable
is the seamless interaction between solid and fluid solution routines with fast and conservative data
transfers. Furthermore, the whole result data is available in OpenFOAM data format, which allows for
combined post-processing of fluid and solid part. On the downside, the coupled solver’s main limitation
is the narrow scope of applicability of the solid part to simplistic membranes with small deflections. In
addition, the common mesh geometry prohibits independent mesh refinement of fluid and solid part.

Verification results for the FAM membrane solver indicate that a mesh length scale of around a
twentieth of the membrane length scale suffices in order to adequately resolve coarse deflection patterns.
A major limitation at the presented state is the lack of an FAM discretization for the second time
derivative of higher than first-order accuracy. This may lead to notable damping of oscillations in the
solid part even if the time step size is chosen two orders of magnitude smaller than the oscillation which
is to be resolved.

For verification of the coupled solver, a reference solution using a commercial FSI framework was
generated. While the test case is to be considered academic only, the agreement between the two-way
coupled solver and reference solution are in good accordance, although the fidelity of the reference solution
is not correctly reproduced. A solution obtained using one-way coupling (neglecting mesh deformation)
showed significantly larger deviations to the reference solution than the solution obtained using two-way
coupling, although the membrane deflection was two orders of magnitude lower than its lateral dimension.
While for the considered test case, deflection prediction significantly reduced the required computing
power, Aitken relaxation for deflection transfer did not yield notable improvements when compared to
constant relaxation with a factor close to one. In summary, the verification results suggest that the
implementation bears the potential to efficiently solve simplistic FSI problems, if a coarse resolution of
the flow-induced motions is acceptable. More notably, the feasibility of the coupled solver design could
be proven.

A possible topic for which the FSI solver in the current state may already be suitable is the simulation
of synthetic jet generators with small membrane deflections. The FAM implementation of more elaborate
surface structures, like plates or membranes with large deflection, is necessary in order to make the
approach applicable for a broader range of test cases. A starting point would be the incorporation of
the plate equation solvers available in recent OpenFOAM versions. In order to integrate the solver more
seamlessly into the OpenFOAM hierarchy, the implementation of the solid part bound to a finite area
region appears reasonable.

Furthermore, the characteristic feature of the coupled solver, that fluid and solid part are contained
in a single executable bears the advantage of each solver having full insight into the other coupling
participant’s convergence progress. This may be exploited to adaptively tighten the convergence criteria
according to the convergence progress during the inner coupling iterations of each time step, reducing
the computational requirements.
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S.W.; validation, S.W.; formal analysis, S.W.; resources, M.M. and A.D.; writing—original draft preparation, S.W.
and M.M.; writing—review and editing, S.W. and M.M.; visualisation, S.W.; supervision, M.M. and A.D.; project
administration, S.W. and M.M. All authors have read and agreed to the published version of the manuscript.
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