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Abstract. The Spalart-Allmaras turbulence model is the model which gets the highest technological

readiness level in the NASA turbulence model resource home page. The model is widely used to predict
external incompressible and compressbile flows. Different corrections to this model incorporating addi-

tional physical effects are presented on the same home page. Unfortunately none of these corrections

are available in the official OpenFOAM version. Furthermore, no publicly available repository which
contains the full set of corrections suggested by Shur et al. [1] to account for curvature and rotation

effects was found. In this technical note, the rotation and streamline curvature correction is incorpo-

rated into the Spalart-Allmaras model in order to overcome this limitation. The same equations as
suggested in Shur et al. [1] are implemented and verified by means of the incompressible flow in a ro-

tating channel, a 2D bump flow in a channel and a channel flow exhibiting a U-turn. Regarding the

rotating channel flow and the flow in a U-turn some quantitative differences remain with respect to the
results of Shur et al. [1]. For the rotating channel flow, a careful consistency check with respect to the

analytical relations leading to the computation of the factor multiplied with the production term was

made. No inconsistencies in the implementation where found. Unfortunately the exact reason for the
differences between the present results compared to the computations of Shur et al. [1], was not found.

The interested readers are encouraged to help to clarify these issues. In the fourth test case it is shown
that the model predicts a more correct turbulent viscosity distribution in the transonic flow around a

delta wing. Applying the streamline and curvature corrections to the Spalart-Allmaras model predicts

an earlier vortex breakdown compared to the standard Spalart-Allmaras model for a high angle of attack
configuration. The agreement with the reference experiments is much better when using the corrections

proposed by Shur et al. [1] to the Spalart-Allmaras compared to the standard Splart-Allmaras model.

1. Introduction

Streamline curvature and the rotation of the frame of reference have an astonishing effect on turbulence
even if mildly present. The direct numerical simulation (DNS) of Moser and Moin [2] studied the influence
of streamline curvature on turbulence by means of a slightly curved periodic channel. The authors found a
visible effect on the symmetry of the velocity fluctuations and the shear stress even for a channel curvature
of 79δ (δ is the channel half width). Moser and Moin [2] observed that the velocity fluctuations and the
shear stress are smaller on the convex (inner) half of the channel compared to the concave (outer) half of
the channel. The influence of the rotation of the frame of reference on turbulence is similar. Brethouwer
et al. [3] performed a parameter study on the influence of the rotation rate Ω of the frame of reference
on the turbulent flow through a channel with periodic boundary conditions. The higher the rotation rate
the bigger the influence on turbulence. For a sufficiently high rotation rate Ω the velocity profile obtained
even a parabolic shape which leads to the conclusion that the flow was almost laminar. As discussed
in [3, 4] the parameter influencing whether turbulence is augmented or diminished is S = − 2Ω

dU/dy . For

S < −1 and S > 0 turbulence is damped and for −1 < S < 0 turbulence is augmented.
In order to account for these effects, Spalart and Shur [5] and Shur et al. [1] introduced a factor fr1

which is multiplied with the production term in the Spalart-Allmaras model. The authors demonstrated
the positive effect of the correction on the prediction of flows subject to streamline curvature and rotation.
The full set of equation can be found in Shur et al. [1]. Even if Shur et al. [1] proposed their correction
more than two decades ago, unfortunately no publicly available implementation in OpenFOAM of the
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correction described in Shur et al. [1] could be found. A few implementations of curvature corrections
within OpenFOAM could be found in the literature. Alahmadi et al. [6], e.g., incorporated a curvature
correction and rotation correction into Menter’s SST model. The authors found that, if they accounted for
the streamline curvature and the rotation, they could fairly well reproduce the solid-body-like tangential
velocity distribution present in the center of a cyclone separator. A solid-body-like tangential velocity
distribution is zero in the center of the cyclone separator and increases linearly with the radius. Using
the standard SST model leads to a prediction of the maximum of the tangential velocity in the center
of the cyclone. Such a velocity distribution is typical for a potential flow vortex and not for the one of
a solid-body-like vortex. Another example of incorporating a rotation and curvature correction into an
OpenFOAM code can be found in [7]. The authors accessed the performance of a curvature correction
incorporated into an explicit algebraic Reynolds stress model. The authors found that accounting for
streamline curvature and rotation effects increases the accuracy of the results in a centrifugal pump flow
when compared to PIV data. Another work to mention is the one of You et al. [8]. The authors studied
the ability of the SST model of Menter together with a streamline curvature correction (SSTRC) to
predict the flow and heat transfer in a swirl tube. You et al. [8] found that the performance of the
SSTRC model is similar to the more computationally demanding DES model.

Summing up, there are a few works where a streamline and curvature correction is implemented
in turbulence models available in OpenFOAM. Unfortunately however, no publicly available repository
was found which contains all terms proposed by Shur et al. [1] and also suggested on the turbulence
model homepage of the NASA. In order to remedy to the deficiency of no publicly available Spalart-
Allmaras model with the streamline and curvature correction proposed by Shur et al. [1], the model was
implemented, verified and validated by means of four different test cases. The source code and the test
cases together with the scripts used to generate the plots are attached to the case files provided.

2. Description of the implementation

Before starting with the description of the implementation, we will shorty recall the standard Spalart-
Allmaras model. After that, we will see how the corrections for the streamline curvature and the rotation
are included. The standard Spalart-Allmaras model implemented in the OpenFOAM version used for the
current investigation reads:

D

Dt
(ρν̃) = ∇ · (ρDν̃ ν̃) +

Cb2

σνt

ρ|∇ν̃|2 + Cb1ρS̃ν̃(1− ft2)−
(
Cw1fw − Cb1

κ2
ft2

)
ρ
ν̃2

d̃2
+ Sν̃ (1)

Note that the ft2 term in the above equation is not implemented in the OpenFOAM version used. In
order to account for the streamline curvature and rotation, the production term is multiplied by a factor
fr1 (see Eqn. (4) for the definition). This means that if the factor fr1 is negative, turbulence is destroyed
and if the factor is greater than one the production of the turbulence is higher compared to the standard
model. The final model equation for ν̃ reads:

D

Dt
(ρν̃) = ∇ · (ρDν̃ ν̃) +

Cb2

σνt

ρ|∇ν̃|2 + fr1Cb1ρS̃ν̃ − Cw1fwρ
ν̃2

d̃2
+ Sν̃ (2)

The factor fw is calculated as follows:

fw = g

[
1 + c6w3

g6 + c6w3

]1/6
, g = r + cw2(r

6 − r), r = min

[
ν̃

S̃κ2d̃2
, 10

]
(3)

The constants used throughout the work are set to following value: σνt = 0.666667, κ = 0.41, Cb2 = 0.622,

Cb1 = 0.1355, Cw1 = Cb1

κ2 + 1+Cb2

σνt
, cw2 = 0.622 and cw3 = 2. d̃ stands for the wall distance. Sν̃ represent

implicit or explicit source terms which can be added via the fvOptions present in OpenFOAM.
Equations (4) to (9) represent the correction described by Shur et al. [1] to account for the turbulence

enhancement or attenuation caused by the streamline curvature or the rotation of the reference frame.
The model was originally proposed by Spalart and Shur [5]. This reference however contains some
typographical error but nevertheless some useful physical insights about the influence of system rotation
and streamline curvature on turbulence can be found.

fr1 = (1 + cr1)
2r∗

1 + r∗
[
1− cr3 tan

−1(cr2r̂)
]
− cr1 (4)

r∗ =
S

ω
(5)
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Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
, ωij =

1

2

[(
∂ui

∂xj
− ∂uj

∂xi

)
+ 2ϵmjiΩm

]
(6)

S2 = 2SijSij , ω2 = 2ωijωij , D2 =
1

2

(
S2 + ω2

)
(7)

cr1 = 1, cr2 = 12, cr3 = 1 (8)

r̂ =
2ωikSjk

D4

[
DSij

Dt
+ (ϵimnSjn + ϵjmnSin) Ωm

]
,
DSij

Dt
=

∂Sij

∂t
+ uk

∂Sij

∂xk
(9)

Note that the velocity ui and the derivatives in Eqn. (4) to Eqn. (9) are defined in the rotating frame
of reference. This is an important point not mentioned in the NASA turbulence model resource home
page but stated in the paper by Shur et al. [1]. The following two listings show the implementation of
the rotation and curvature correction. The first task to achieve is to retrieve the rotation of the reference
frame Ω. How it is done is shown in the following listing:�

1 template<class BasicTurbulenceModel>
2 volVectorField SpalartAllmarasRC<BasicTurbulenceModel>::OmegaRefFrame() const
3 {
4 volVectorField Omega
5 (
6 IOobject(
7 "Omega",
8 this−>runTime .timeName(),
9 this−>mesh ,

10 IOobject::NO READ,
11 IOobject::NO WRITE
12 ),
13 this−>mesh ,
14 dimensionedVector("Omega", dimless/dimTime, Zero)
15 );
16
17 const auto* MRFZones = this−>mesh().template
18 cfindObject<IOMRFZoneList>("MRFProperties");
19
20 if (!MRFZones && MRFZones−>MRFZoneList::size() == 0 && debug)
21 {
22 Info << "Unable to find MRFProperties in the database. " << endl
23 << "Omega set to zero" << endl;
24 return Omega;
25 }
26
27 for (label i=0; i < MRFZones−>MRFZoneList::size(); i++)
28 {
29 const dictionary& MRFZoneDict =
30 MRFZones−>IOdictionary::subDict(MRFZones−>MRFZoneList::operator[](i).

name());
31
32 const label cellZoneIndex =
33 this−>mesh .cellZones().findIndex(MRFZoneDict.get<word>("cellZone"));
34
35 const labelList& cells = this−>mesh .cellZones()[cellZoneIndex];
36
37 forAll(cells, cellI)
38 {
39 label celli = cells[cellI];
40 Omega[celli] = MRFZones−>MRFZoneList::operator[](i).Omega();
41 }
42 }
43
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44 if (this−>mesh .time().writeTime())
45 {
46 Info << "write OmegaRefFrame" << endl;
47 Omega.write();
48 }
49
50
51 return Omega;� �

The first step performed in the above listing, is to create the volVectorField Omega. The field contains
for each cell of the mesh the rotation rate of the moving reference frames in which the cell is located. The
second step is to loop over all existing moving reference frames and assign to the volVectorField Omega
the rotation rate of the corresponding frame of reference where the cell with the index cellI is located. It
is important to get the correct index of the moving reference zone among all possible cell zones present
in the domain. This task is achieved by the call:�

1 const label cellZoneIndex =
2 this−>mesh .cellZones().findIndex(MRFZoneDict.get<word>("cellZone"));� �

The function call retrieves the id of the MRF zone from its name.
The next listing shows the actual computation of the factor fr1.�

1 template<class BasicTurbulenceModel>
2 tmp<volScalarField> SpalartAllmarasRC<BasicTurbulenceModel>::fr1( ) const
3 {
4
5 const auto* MRFZones =
6 this−>mesh().template
7 cfindObject<IOMRFZoneList>("MRFProperties");
8
9 volVectorField Urel (this−>U );

10 volVectorField& UrelRef (Urel);
11 MRFZones−>MRFZoneList::makeRelative(UrelRef);
12 surfaceScalarField phi(Foam::fvc::interpolate(UrelRef)&this−>mesh .Sf());
13
14 volVectorField Omega (this−>OmegaRefFrame());
15 volTensorField gradU (Foam::fvc::grad(UrelRef));
16
17 // transpose to be consistent with notation of Shur et al. 2000
18 gradU = gradU.T();
19 volTensorField S ("S", scalar(0.5) * ( gradU + gradU.T()));
20 volTensorField dSdt (Foam::fvc::ddt(S));
21 volTensorField H ("H", *Omega);
22 volTensorField W ("W", scalar(0.5) * ( gradU − gradU.T() + 2.0*H));
23 volTensorField WS (W & S.T());
24 volScalarField S2 (scalar(2.0) * (S && S));
25 volScalarField W2 (scalar(2.0) * (W && W));
26 volScalarField D2 (scalar(0.5) * (S2 + W2));
27 dimensionedScalar smallW2 (W2.dimensions(), SMALL);
28 volScalarField rstar ("rstar", sqrt(S2) / (sqrt(W2 + smallW2)));
29
30
31 volTensorField ejmnSinOm ("ejmnSinOm", S & H.T());
32 volTensorField eimnSjnOm ("eimnSjnOm", H & S.T());
33
34
35 volTensorField DSDT (dSdt + Foam::fvc::div(phi,S));
36
37 dimensionedScalar smallD2 (D2.dimensions()*D2.dimensions(), SMALL);
38
39 volTensorField WSD ("WSD", scalar(2.0) * WS / (sqr(D2) + smallD2 ));
40 volScalarField rhat ("rhat", WSD && (DSDT + eimnSjnOm + ejmnSinOm));
41
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42 return ( (scalar(1.0) + Cr1 )*scalar(2.0)*rstar / (scalar(1.0) + rstar)* (scalar
(1.0) − Cr3 *Foam::atan(Cr2 *rhat)) − Cr1 );

43
44 }� �

It is important to note here, that according to Shur et al. [1] the velocity and the derivatives are defined
in the rotating frame of reference. Unfortunately this peculiarity is not mentioned in the turbulence model
resource homepage. In OpenFOAM the velocity is defined in the inertial frame of reference. For this
reason the velocity has to be made relative to the rotating frame of reference before that the gradient
operator is applied to the velocity. This is done in the following code snippet:�

1 const auto* MRFZones =
2 this−>mesh().template
3 cfindObject<IOMRFZoneList>("MRFProperties");
4
5 volVectorField Urel (this−>U );
6 volVectorField& UrelRef (Urel);
7 MRFZones−>MRFZoneList::makeRelative(UrelRef);� �

Once the velocity is made relative, the gradient operator can be used to calculated the expressions
required for the model. Another point to mention here is the difference in the definition of the gradient
of a vector adopted in OpenFOAM and the one used in Shur et al. [1]. In OpenFOAM the gradient of the

velocity is defined as ∇u =
∂uj

∂xi
while in Shur et al. [1] the gradient of the velocity is defined as ∇u = ∂ui

∂xj
.

In order to be consistent with the notation adopted in Shur et al. [1], the following operation had to be
performed in the code (i.e. we have to transpose the velocity gradient computed in OpenFOAM):�

1 gradU = gradU.T();� �
Another point worth to mention here is how the inner product P of two tensors T and S are defined in
OpenFOAM: Pij = TikSkj . This means that the summation goes over the columns of the first tensor and
the rows of the second tensor. In Eqn. (9) we need to compute the inner product ωikSjk, i.e. we need
to do the summation over the columns of both tensors. In order to achieve the latter inner product with
the operator overloaded in OpenFOAM we need to transpose the second tensor Sjk:�

1 volTensorField WS (W & S.T());� �
All other steps leading to the computation of the terms required for the factor fr1 are rather standard

except for the computation of the terms (ϵimnSjn + ϵjmnSin) Ωm and 2ϵmjiΩm. For the computation of
the three tensors 2ϵmjiΩm, ϵimnSjnΩm and ϵjmnSinΩm we first have to recall the definition of the the
Hodge star operator ⋆. If we apply the operator ⋆ to the rotation rate vector Ω we get the matrix H:
H = ⋆Ω. The matrix H looks like:

H =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0


In order to see how the operator H and the tensor 2ϵmjiΩm are related we write down the tensor:

ϵmjiΩm =

 0 ϵ321Ω3 ϵ231Ω2

ϵ321Ω3 0 ϵ132Ω1

ϵ213Ω2 ϵ123Ω1 0


At this point we have to recall that the permutation symbol ϵimn which is equal to 1 for even permutations,
i.e. ϵ123 = ϵ231 = ϵ312 = 1 and equal to -1 for odd permutations, i.e. ϵ132 = ϵ312 = ϵ213 = −1. If we
insert the definition in the above relation we get:

ϵmjiΩm =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0


If we compare the above relation with Eqn. (2) we see that both are equal.

The next step is to write down the tensor ϵimnSjnΩm:

ϵimnSjnΩm =

ϵ123S13Ω2 + ϵ132S12Ω3 ϵ123S23Ω2 + ϵ132S22Ω3 ϵ123S33Ω2 + ϵ132S32Ω3

ϵ231S11Ω3 + ϵ213S13Ω1 ϵ231S21Ω3 + ϵ213S23Ω1 ϵ231S31Ω3 + ϵ213S33Ω1

ϵ312S12Ω1 + ϵ321S11Ω2 ϵ312S22Ω1 + ϵ321S21Ω2 ϵ312S32Ω1 + ϵ321S31Ω2


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At this point we have to recall again that the permutation symbol ϵimn which is equal to 1 for even
permutations, i.e. ϵ123 = ϵ231 = ϵ312 = 1 and equal to -1 for odd permutations, i.e. ϵ132 = ϵ312 = ϵ213 =
−1. For all other combinations of indexes the permutation symbol is equal to zero. With this convention
we obtain:

ϵimnSjnΩm =

S13Ω2 − S12Ω3 S23Ω2 − S22Ω3 S33Ω2 − S32Ω3

S11Ω3 − S13Ω1 S21Ω3 − S23Ω1 S31Ω3 − S33Ω1

S12Ω1 − S11Ω2 S22Ω1 − S21Ω2 S32Ω1 − S31Ω2


We can easily see that

ϵimnSjnΩm = H · ST =

 0 −Ω3 Ω2

Ω3 0 −Ω1

−Ω2 Ω1 0

 ·

S11 S21 S31

S12 S22 S32

S13 S23 S33


Using the same procedure as described above, we can see that

ϵjmnSinΩm =

S13Ω2 − S12Ω3 S11Ω3 − S13Ω1 S12Ω1 − S11Ω2

S23Ω2 − S22Ω3 S21Ω3 − S23Ω1 S22Ω1 − S21Ω2

S33Ω2 − S32Ω3 S31Ω3 − S33Ω1 S32Ω1 − S31Ω2


and finally

ϵjmnSinΩm = S ·HT =

S11 S12 S13

S21 S22 S23

S31 S32 S33

 ·

 0 Ω3 −Ω2

−Ω3 0 Ω1

Ω2 −Ω1 0


The next code snippets shows how the correction term fr1 is actually incorporated into the Spalart-

Allmaras model. Note that the production term is not always positive since fr1 can also be negative. For
this reason the source term is explicit if it is positive and implicit if it is negative.�

1
2 const volScalarField::Internal fr1(this−>fr1());
3
4 tmp<fvScalarMatrix> nuTildaEqn
5 (
6 fvm::ddt(alpha, rho, nuTilda )
7 + fvm::div(alphaRhoPhi, nuTilda )
8 − fvm::laplacian(alpha*rho*DnuTildaEff(), nuTilda )
9 − Cb2 /sigmaNut *alpha*rho*magSqr(fvc::grad(nuTilda ))

10 ==
11 fvm::SuSp(fr1*Cb1 *alpha()*rho()*Stilda, nuTilda )
12 − fvm::Sp(Cw1 *alpha()*rho()*fw(Stilda)*nuTilda ()/sqr(y ), nuTilda )
13 + fvOptions(alpha, rho, nuTilda )
14 );� �

3. Test cases

In this section, the test cases used for the verification and validation of the implementation are pre-
sented. Of course all case files and the scripts used to generate the plots in this section are provided in
the downloadable material. We start with the 2D bump flow in a channel. For this test case reference
simulation data are available from the NASA turbulence model resource. The solver CFL3D together
with the Spalart-Allmaras model with rotation and curvature correction was used to generate the data.
By comparing the present implementation with the reference simulation we can check if the current im-
plementation is correct. The second test case is the turbulent flow in a rotating channel. The purpose of
this test case is to show that the influence of a rotating frame of reference on the turbulence is correctly
captured by the current implementation. The third test case is the 2D flow in a U-turn. For this case
we have an attenuation of turbulence close to the inner radius of the curved channel and turbulence
enhancement close to the outer radius of the bend. Here we check if this behavior can be reproduced
by the model. All these steps are mandatory preliminary steps to ensure the correctness of the imple-
mentation in order that one can proceed to the final test case. It is the transonic flow over the second
vortex flow experiment (VFE-2) delta wing. We will see here that the introduction of the rotation and
curvature correction in the Spalart-Allmaras model leads to the appearance of a shock induced vortex
breakdown. The vortex breakdown is not predicted if the standard Spallart-Allmaras model is used. The
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(a) Cf (b) Cp

Figure 1. Friction coefficient Cf (left) and the pressure coefficient Cp (right). Com-
parison of the current implementation of the RC Spalart-Allmaras model (SpalartAll-
marasRC) with the results of the code CFL3D with the same turbulence model.

results obtained by the Spalart-Allmaras model with rotation correction are closer to the experimental
observations by Chu and Luckring [9].

3.1. 2D bump in a channel. The first test case used for the verification of the current implementation
is the 2D bump in a channel described in the NASA turbulence model resource (TMR) home page (see
https://turbmodels.larc.nasa.gov/bump.html). The purpose is to check if OpenFOAM together with the
Spalart-Allmaras RC model gives the same results as the reference code CFL3D. The grid is taken from the
OpenFOAM tutorials (see $FOAM TUTORIALS/tutorials/incompressible/simpleFoam/bump2D). Note
that the grids provided on the TMR homepage could not be converted to an OpenFOAM readable format.
In the description of the test case on the OpenFOAM homepage (see https://www.openfoam.com/docume
ntation/guides/latest/doc/verification-validation-turbulent-bump-2d.html) the TMR homepage is cited
and it is mentioned that the test case is based on the description provided therein. The grid provided in
the tutorial is therefore believed to be very close to the plot3D grid provided on the TMR homepage. The
grid had a size of 240×648 cells in wall-normal and streamwise directions, respectively. For the velocity a
constant inflow velocity of Uinf = 69.44m

s is used. At the bump a no-slip condition is used, at the outlet
a inflow-outflow condition is applied and at the top a symmetry condition is imposed. For the pressure a
zero gradient condition is used for the inflow and the wall, a symmetry condition for the top and a fixed
value for the outlet. For the turbulent viscosity νt the nutLowReWallFunction wall function is used for
the bump, a symmetry condition is used for the top and a calculated condition is applied for the rest of

the boundaries. For ν̂ a fixed value of 6.93× 10−5m2

s is used at the inlet, an inflow-outflow condition at
the outlet, a symmetry condition at the top and the value at the bump is set to zero. It was ensured that
the maximum size of the cells adjacent the wall was small enough to ensure that the condition y+ < 1
was satisfied. The incompressible solver simpleFoam was used to simulate this test case.

Figure 1 shows the comparison between the current implementation and the results of the code CFL3D
(note that the results of the code CFL3D are computed on a grid of 641×1409). The left figure shows the
friction coefficient Cf = 0.5 τw

ρU2
inf

and the right figure shows the pressure coefficient Cp = 0.5 pw

ρU2
inf

. τw

and pw are the wall shear stress and the pressure at the wall, respectively. It is evident that the results
of the two codes using the same turbulence model match very well. The small difference between the
solvers compared may be due to the different grids used. Another reason for the difference may be that
the CFL3D results are computed assuming a compressible flow while the results of OpenFOAM shown
here are computed with an incompressible solver. Even though the Mach number Ma = 0.2 used to
compute the CFL3D results was very small, small compressibility effect may still occur.

3.2. Rotating channel. This test case consists in a channel rotating with a constant rotational speed of
Ω3 = 0.5 1

s around the z-axis in the counter-clockwise sense. Figure 2 shows the configuration of the test
case. The flow points in the positive x-direction. The y-coordinate points from the bottom wall to the top
wall. The z-direction points outward of the plane. The rotation rate Ω3 points in the positive z-direction.
The purpose of this test case is to check if the current implementation gives correct results for situations
where the flow is subject to the rotation of the frame of reference. For this type of configuration we have
a turbulence attenuation over the whole channel. The attenuation at the bottom wall is less pronounced
compared to the top wall (see [1, 3, 10]). A no-slip condition is applied on the bottom and top wall and
empty condition on the side patches. Inflow and outflow is periodic. The flow is forced to have a constant
bulk velocity of Ub,i = 0.75m

s in the streamwise direction in the inertial frame of reference. The channel



166 M. Alletto

Figure 2. Sketch of the rotating channel configuration

height is H = 1m. If we add the mean velocity of the frame of reference Ufr = 0.5Ω3 ∗H = 0.25m
s to

the bulk velocity in the inertial frame of reference, we obtain a mean velocity in the frame of reference of
Um = 1m

s . The Reynolds number is equal to Re = UmH
ν = 5.8×103. A Rossby number of Ro = ΩH

Um
= 0.5

is used to evaluate the implementation. For ν̂ a fixed value of 0 was used at the walls and for νt a low
Re-number wall function was used. 300 cells were used in the wall-normal direction and 1 cell in the
streamwise direction. It was ensured that the maximum size of the cells adjacent the wall was small
enough to ensure that the condition y+ < 1 was satisfied. The incompressible solver simpleFoam was
used to simulate this test case.

Figure 3 compares the mean velocity scaled by the bulk velocity U
Um

(top left) and the turbulent

viscosity νt

ν (top right) predicted by the SA model with the SARC model. The results of the SARC
model shown in Shur et al. [1] (labeled as Shur 2000 SARC) are also shown for comparison. The line
with a slope of 2Ω is also include for comparison. Furthermore the factor fr1 computed with a rotation
rate of Ω3 = 0.5 1

s is compared to the same quantity but for a non-rotating case in the bottom center
figure. It is evident that incorporating the effect of rotation in the turbulence model leads to a much
more asymmetric velocity profile with respect to the channel center line compared to the model without
correction. Interestingly the velocity profile predicted by the corrent implementation differ slightly from
the one predicted by Shur et al. [1]. The agreement in the center of the channel with the line with a slope
of 2Ω is however better compared with the results of Shur et al. [1]. Velocity profiles with a slope of 2Ω are
also predicted by the DNS of Brethouwer [11] over a wide range of Reynolds numbers and for moderate
Rossby numbers. For high Rossby numbers the DNS of Brethouwer [11] exhibits parabolic mean velocity
profiles. The exact reason of the difference with the results of Shur et al. [1] is not very clear. A careful
consistency check of the implemented equation is performed in the appendix. We can conclude with
a sufficient degree of confidence from this consistency check that the implementation is correct for the
current rotating channel flow. We can also observe that the value of the turbulent viscosity νt at the
suction (upper) part is much lower compared to the pressure (lower) part of the channel for the SARC
model. The opposite behavior can actually be observed when the SA model is used. The turbulence
viscosity precicted by the current work is higher compared with the one computed by Shur et al. [1].
When looking at the behavior of fr1 we see that the factor is equal to one for the case without system
rotation. The factor is positive at the lower part of the channel and negative at the upper part. Also
fr1 differs from the one computed by Shur et al. [1]. It turns negative at a lower y-coordinate compared
to the simulation of Shur et al. [1]. In the upper part of the channel a constant offset is observed with
respect to the results of Shur et al. [1]. Again, the exact reason is not very clear.

3.3. U-Turn. Figure 4 shows the configuration used for the present test case. The inlet is placed 50H
from the start from the u-turn. H denotes the height of the channel. The purpose to place the inflow
so far upstream was to ensure fully developed conditions at S/H = −10 upstream of the start of the
U-turn. S represents the distance measured along the channel center line. At this position the reference
experiment had fully developed conditions (see Monson et al. [12]). The vectors n and t denote the
wall-normal vector and the wall tangential vector, respectively. The wall tangential vector t is used to
calculate the wall shear stress τw. How it is done will be explained later. At the inflow the velocity was

set to 1m
s in the streamwise direction, the pressure to zero gradient and ν̂ = 6.93×10−5m2

s . At the outlet
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(a) U
Ub

(b) νt
ν

(c) fr1

Figure 3. Velocity scaled by the bulk velocity U
Um

(top left) for the Spalart-Allmaras

model (SA) and the Spalart-Allmaras model with rotation and curvature correction
(SARC), turbulent viscosity scaled by the molecular viscosity νt

ν (top right) for the
Spalart-Allmaras model (SA) and the Spalart-Allmaras model with rotation and curva-
ture correction (SARC), constant fr1 for a Rossby number of 0 (SARC Omega 0) and
for a Rossby number of 0.5 (SARC). The results of Shur et al. [1] using the streamline
and curvature correction are labeled as Shur 2000 SARC

Figure 4. Sketch of the 180° pipe bend configuration

the pressure is set to 0 and the other two variables to zero gradient. At the wall a nutLowReWallFunction
was used for νt, a no-slip condition for the velocity and a zero gradient condition for the pressure. The
Reynolds number based on the mean velocity and the channel height H was Re = UH

ν = 106. The mesh
had 350 cells in the wall-normal direction and 290 in the streamwise direction. It was ensured that the
maximum size of the cells adjacent to the wall was small enough to ensure that the condition y+ < 1 was
satisfied. The incompressible solver simpleFoam was used to simulate this test case.

Figure 5 show the computed friction cf = τw
0.5ρU2

m
(top row) and pressure cp =

p−p−5S/H

0.5ρU2
m

(bottom)

coefficients. The wall shear stress τw is calculate by calculating the dot product of the wall shear stress
vector τw output by OpenFOAM at the wall boundaries with the wall tangential vector t (see Fig. 4),
i.e. τw = −τw · t. p−5S/H is the pressure at a distance S/H = −5 from the start of the pipe bend. Um is
the bulk velocity. On the right column the results on the inner wall are shown and on the left column the
results on the outer wall are visualized. The results of Shur et al. [1] using the Spalart-Allmaras (Shur
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(a) cf inner wall (b) cf outer wall

(c) cp inner wall (d) cp outer wall

Figure 5. Comparison of the friction coefficient cf (top row) and pressure coefficient
cp (bottom row) for the Spalart-Allmaras model (SA) and the Spalart-Allmaras model
with rotation and curvature correction (SARC). The red dots represent the reference
experiments. The left column are the results obtained at the inner wall and the right
column are the results obtained at the outer wall.

2000 SA) and also the Spalart-Allmaras model with rotation rate and curvature correction (Shur 2000
SARC) are also included. The results obtained by Shur et al. [1] are displayed as dashed lines with the
same color code used for the present results. It is evident that the SARC model agrees slightly better with
the reference experiments. Inside the outer radius of the pipe bend the friction coefficient cf is higher
for the SARC model compared to the SA model. This is consistent with the high factor fr1 observed at
the concave side of the bend (see Fig. 6). A high factor fr1 increases the turbulence production with
respect to the standard SA model and therefore should lead to higher friction at the outer part of the
pipe bend. The agreement with the reference simulation of Shur et al. [1] is reasonably good for both
models compared, i.e. the standard Spalart-Allmaras model SA and the Spalart-Allmaras model with
rotation rate and curvature correction SARC. The reason why the current results do not match exactly
those computed by Shur et al. [1] is not known.

Figure 6 shows the computed values for the factor fr1 in the pipe bend. It is evident that in the
inner (convex) part of the bend the factor is negative and in the outer (concave) part it is positive. This
means that close to the convex part of the pipe bend the turbulence will be damped, whereas it will be
augmented at the concave part. Similar results are also found in the DNS of Moser and Moin [2] which
simulated a weakly curved periodic channel. This means that the current implementation of the model
should qualitatively reproduce the influence of curvature on turbulence.

3.4. Transonic delta wing. Figure 7 shows a sketch of the setup of the simulation around a delta
wing. The second international vortex flow experiment (VFE-2) wing consists of a swept wing with a
root chord c of 0.4905 m. The lines delimiting the box are much closer to the wing in the sketch com-
pared to the real setup. The details of the experimental setup together with the measurement results
can be found in Chu and Luckring [9]. The domain consists of a rectangular box where the edges are
located 18c from the wing nose. This domain size should reduce the influence of the artificial boundary
conditions on the results to a minimum. On the side of the box which is located at the wing root,
a symmetry boundary condition is applied. This allows to half the grid size. For all other sides an
inflow-outflow boundary conditions is used for all quantities expect the pressure. For the pressure, an
outflow-inflow boundary condition is used. Here the zero gradient boundary condition is used for incom-
ing flow and a fixed value for outgoing flow. The free stream mach number is set to Ma = 0.84 and
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Figure 6. Contour plot of the factor fr1.

Figure 7. Sketch of the setup used to simulate the flow around the delta wing

the angle of attack is set to α = 26.7◦. The Reynolds number based on the chord length was approx-
imately Re = 5 × 106. For the turbulent viscosity νt the wall function nutUSpaldingWallFunction was
used in order to avoid a very fine mesh close to the surface. The available wing surface data in tec-
plot format can be downloaded here: https://www.kbwiki.ercoftac.org/w/index.php/Description AC1-
09#Flow Domain Geometry. The file can be converted with paraview to an stl file which is required by
snappyHexMesh. The pressure based compressbile solver rhoPimpleFoam with a local time stepping was
used to simulate this case.

Five refinement regions are chosen to gradually increase the resolution from the coarsest level to the
finest level around the wing. The initial grid had hexagonal cells of 2.4 times the chord length. Note that
it is very important to start with cells which are cubes to get a high wall layer coverage near the surface
if wall layers are used. The fifth refinement level has a cell side length of 0.07 times the chord length.
The surface around the wing is additionally refined to capture the fine curvature at the wing nose and
the tail. For the surface a refinement level 8 and 9 was used. A refinement level of 8 correspond to 0.02
times the chord and a refinement level of 9 correspond to a cell size of 0.01 times the chord. In order to
resolve the tip vortices well, 9 cells between levels were chosen in order to have a fine resolution close to
the wing. This strategy results in a mesh of approximately 7.5×105 cells. Five layers are used to increase
the wall-normal resolution to capture the sharp velocity gradients near the wall. The layer coverage is
roughly 97%.

Figure 8 shows the pressure distribution on the upper surface of the delta wing when using the SA
model (left) and the SARC model (right). It is evident that when using the SA model the wing tip vortices
extend over almost the whole wing chord length. The wing tip vortices lead to a region of low pressure
close to the outer part of the wing. These low pressure regions are visible in the pressure contour plot.
When using the SARC model the vortices break down at around a third of the chord. When using the
SARC the low pressure region caused by the wing tip vortices is suddenly interrupted by a strong pressure
increase close to the symmetry plane. The correct prediction of the location of the vortex breakdown is
critical for the correct prediction of the lift generated by the wing. For a delta wing configuration the low
pressure regions induced by the wing tip vortices are responsible for the major part of the lift generation.

Figure 9 shows a contour plot of the turbulent viscosity νt distribution at a plane at x
c = 0.3. The

left figure shows the prediction using the SA model and the right the prediction of the SARC model. It
is evident that when applying the SA model, νt obtains high values in the vortex core. This is not the
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(a) pressure SA (b) pressure SARC

Figure 8. Comparison of the pressure distribution at the surface of the Delta Wing.
Left: Spalart-Allmaras model (SA), right: Spallart-Allmaras with Rotation correction
(SARC)

(a) νt SA (b) νt SARC

Figure 9. Comparison of the turbulent viscosity νt distribution at a plane at x
c = 0.3.

Left: Spalart-Allmaras model (SA), right: Spallart-Allmaras with Rotation correction
(SARC)

case for the SARC which leads to considerable lower values of the turbulent viscosity in the vortex core.
Note that the same observation was done by Duraisamy and Iaccarino [13] when studying the influence
of the curvature correction applied to the v2− f model: When analyzing the turbulent viscosity νt in the
core of a wing tip vortex, Duraisamy and Iaccarino [13] found that the v2 − f model without curvature
correction predicted unrealistic high values of νt. These high values of νt were in contradiction with the
stabilizing effect of a vortex exhibiting a nearly solid body rotation. After including a curvature correction
to the v2− f model, the value of νt in the vortex core observed by Duraisamy and Iaccarino [13] dropped
considerably reaching realistic values.

Figure 10 shows the −cp values over the upper part of the wing span (i.e. z
b ≥ 0) at different position

x
c along the wing chord. The bottom right figure in Fig. 10 shows the −cp values at the at symmetry
plane (i.e. y

b = 0). The constant b represents the local wing span. The constant c is the chord length
at the symmetry plane. The bottom right figure shows the distribution of −cp along the upper part of
the wing along the chord at the symmetry plane. The data used for the plotting are extracted from
paraview. I proceeded like the following to extract the data: First only the pressure at the wing surface
is retained in paraview. After that we have to slice the wing surface at the desired position. As last point
one has to save the date with a csv format (thanks to the reviewer suggesting how to extract the data
from paraview for the purpose making a line plot). A python file which does the extraction of the data
automatically is added to the case files. It is evident that at the first measurement position x

c = 0.2 both
models give the same pressure distribution along the wing span. The peak of −cp is not as pronounced
as visibly in the experiment. The reason is the low resolution used in the simulation. When doubling the
points in all three directions in the provided blockMeshDict, the pressure peak at x

c = 0.2 is higher and
agrees well with the reference experiments. The results are not shown for sake of brevity. In this work
we want to highlight the differences in the flow field obtained when using the SA and the SARC model
and not making a mesh sensitivity study. The interested readers are free to modify the provided cases
as they wishes. The results of both models start to deviate from a position x

c = 0.6 along the chord. For
the SARC model the strength of the wing tip vortices starts to diminish. This is visible by the lower
−cp value close to the wing tip. For the SA model the −cp value is higher. Higher −cp values mean
lower pressure close to the vortex core. Low pressure in the vortex core is an indicator for large turning
speeds. At a position of x

c = 0.8 the SARC already predicts the absence of the wing tip vortex while it is
still present for the SA model and also in the reference experiments. The agreement with the reference
experiment is much better for the SARC compared with the SA model. At a position of x

c = 0.95 the
agreement of the SARC with the experiment is also much better compared to the SA model. Interesting
is the comparison of the evolution of −cp along the upper surface adjacent to the symmetry line. The −cp
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(a) −cp at x
c
= 0.2 (b) −cp at x

c
= 0.4

(c) −cp at x
c
= 0.6 (d) −cp at x

c
= 0.8

(e) −cp at x
c
= 0.95 (f) −cp at y

c
= 0.0

Figure 10. Comparison of the pressure coefficient −cp at different positions along the
cord and at the bottom right the values of −cp at a line in streamwise direction at the
symmetry plane is sown.

for the SARC experiences a first sharp drop at a position of y
c = 0.4. This means that a first occurrence

of a shock is predicted by the simulation using the SARC turbulence model. This shock wave is not
predicted if we use the SA model. The second shock occurs at the intersection of the wing and the shaft
holding the wing located at around y

c = 0.6.

4. Conclusion

In this technical note, an implementation of the rotation and streamline curvature correction to the
Spalart-Allmaras model (SARC) as suggested in Shur et al. [1] is presented. The motivation for the
present work is that no publicly available repository was found which contains the full set of terms
suggested in Shur et al. [1]. The equations implemented are also found in the NASA turbulence model
resource homepage. The correctness of the implementation is assessed by means of three different test
cases: The 2D flow of a bump in a channel, a periodically rotating channel and the flow in a U-turn. The
model mimics correctly the influence of rotation and stream line curvature on turbulence.

Regarding the 2D bump flow, the results of the current implementation of the model of Shur et al. [1]
agree very well with the results obtain with the implementation in the code CFL3D.

Regarding the periodically rotating channel flow and the flow in a U-turn we see quantitative differences
between the results of the current implementation and the results published in the paper of Shur et al. [1].
For the rotating channel flow the turbulence viscosity νt predicted with the current implementation is
higher compared to the results of Shur et al. [1]. Also for the distribution of the term fr1 over the
channel height we found differences between the current implementation and the results of Shur et al. [1].



172 M. Alletto

Regarding the flow in a U-turn we also observe quantitative differences in the evolution of the skin friction
and pressure coefficient at the walls. Unfortunately we could not spot the reason of this discrepancy with
clarity. A consistency check regarding the term fr1 for the rotating channel flow provided in the appendix
showed that the current implementation of the equation provided by Shur et al. [1] is clearly different
compared to the implementation of the authors of the paper. The current implementation of fr1 is
however consistent with the analytical equation derived for fr1 in case of the rotating channel flow.
For this reason, we can state with a high degree of confidence, that the current implementation of the
equations provided by Shur et al. [1] is correct. Since the source code along with all test cases is publicly
available, I encourage every interested reader to help to definitely solve these issues.

Finally a 3D transonic flow around a delta wing is tackled. It could be shown that the shock induced
vortex breakdown happens further upstream if the Spalart-Allmaras model with curvature correction
(SARC) is applied. In comparison the vortex break down predicted when using the standard Spalart-
Allmaras (SA) model as implemented in the official OpenFOAM release, happens further downstream.
The SARC model leads to much smaller turbulent viscosity νt in the core of the wing tip vortex compared
to the SA model. Small νt values are more consistent with the turbulence damping effect of solid-body-
like vortices than high values of νt as computed by the SA model. The high values of νt in the SA are
generated by high shear values.
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Appendix A. Consistency check of the implemented equations

In this section we will perform a consistency check of the implemented equations using the rotating
channel case solutions. The rotating channel is a 1D flow and the resulting tensors and the expressions
derived from it are relatively simple. For this reason, it is an ideal case to test the consistency of the
implemented equations. Note that the gnuplot and python files used to produce all plots used for the
consistency check are available in the provided case files under the directory of the rotating channel test
case. For this reason the interested reader can verify the correctness of the implemented equation. We
are starting our analysis with the definition of the shear stress tensor Sij and the rotation rate tensor ωij

in the 1D rotating channel case (see also Eqn. (6)):

Sij =

 0 S12 0
S21 0 0
0 0 0

 , ωij =

 0 S12 − Ω3 0
−S21 +Ω3 0 0

0 0 0

 , S12 = S21 =
1

2
uy (10)

uy is the derivative of the streamwise component of the velocity u with respect to the y-coordinate.
We see that the rotation rate tensor ωij is a function of the velocity gradient 1

2uy and the rotation rate
Ω3 around the z-axis. The first step of the consistency check is to write the tensors Sij and ωij to the
hard drive. After that we check if the components of the tensor ωij can be retrieved as function of 1

2uy

and Ω3. Figure 11 on the left visualizes this consistency check. We see that the components of the tensor
ωij can be retrieved as function of S12, S21 and Ω3. Looking at Eqn. (10) we see that the rotation rate
tensor ωij should become zero in the inner part of the channel where the slope of the velocity uy = 2Ω3

(see figure 3). When looking at the left figure of figure 11 wee that this is actually the case underlining
the correctness of the computation of ωij . The figure on the right of figure 11 displays the consistency
check of r∗ vs. ωij and Sij . See also Eqn. 5 for the definition of r∗. For the rotating channel flow r∗ can
be written as
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(a) check ωij vs.

Sij

(b) check r∗ vs.
ωij , Sij

Figure 11. Consistency check of ωij vs. Sij (left) and r∗ vs. ωij , Sij

(a) check

ϵimnSjnΩm vs.
Sij and Ωm

(b) check

ϵjmnSinΩm vs.
Sij and Ωm

Figure 12. Consistency check of ϵimnSjnΩm (left) and ϵjmnSinΩm (right) vs. Sij and
Ωm

r∗ =
S

ω
=

√
2(S12S12 + S21S21)√
2(ω12ω12 + ω21ω21)

. (11)

We see from Eqn. (11) that the volScalarField r∗ can be retrieved from the components of the
volTensorFields ωij and Sij written to the hard drive. From Fig. 11 on the right we see that r∗ can be
retrieved from the components of ωij and Sij . What we can observe is also that r∗ is always positive and
it obtains very high values in the middle of the channel. The observations that r∗ is always positive is
consistent with the definition of r∗: it is a ratio of two norms. When looking at the equation for ωij of
the channel case (see Eqn. (10)) it is evident that the components of ωij are becoming zero for a velocity
gradient uy = 2Ω3. For both components of ωij equal to zero the denominator of r∗ becomes also zero
and hence r∗ becomes very large. The behaviors of always positive r∗ values and the large values in the
region of uy = 2Ω3 are reflected in the Fig. 11 on the right.

The next step is to write down the tensors ϵimnSjnΩm and ϵjmnSinΩm for the case of the rotating
channel flow. We can easily verify that following relations holds for the two latter tensors in case of the
1D rotating channel flow:

ϵjmnSinΩm = SH,ij = ϵimnSjnΩm = HS,ij =

−S12Ω3 0 0
0 S21Ω3 0
0 0 0

 (12)

Figure 12 shows the consistency check of ϵimnSjnΩm = HS,ij on the left and ϵjmnSinΩm = SH,ij vs.
Sij and Ωm on the right. It is evident that the components of the tensors ϵimnSjnΩm and ϵjmnSinΩm can
be retrieved as function of Sij and Ω3. The lines with constant values of Ω2

3 and −Ω2
3 are also shown in the

plots. It is easy to verify that for the region where the gradient of the velocity is approximately uy = 2Ω3

the components of the tensors become equal to SH,12 = SH,12 = −Ω2
3 and equal to SH,21 = SH,21 = Ω2

3.

The next step is to write down the tensor
2ωikSjk

D4 for the case of the rotating channel flow:
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(a) check
2ωikSjk

D4

vs. Sij and ωij

(b) check r̂ vs.
2ωikSjk

D4

(c) check fri vs. r∗

and r̂

Figure 13. Consistency check of
2ωikSjk

D4 vs. Sij and ωij (top left), r̂ vs.
2ωikSjk

D4 (top
right) and fri vs r

∗ and r̂ (bottom center).

2ωikSjk

D4
= WSDij =

2

{0.5[2(S2
12 + S2

21) + 2(ω2
12 + ω2

21)]}2

ω12S12 0 0
0 ω21S21 0
0 0 0

 (13)

For better readability we define the tensor
2ωikSjk

D4 = WSDij . Figure 13 on the top left shows the

consistency check
2ωikSjk

D4 vs. Sij and ωij . It is evident the the volTensorField
2ωikSjk

D4 = WSDij written
to the hard drive can be retrieved from the two volTensorFields Sij and ωij . The next tensors used for the
consistency check are defined as follows: ϵimnSjnΩm = HS,ij and ϵjmnSinΩm = SH,ij . For the rotating

channel flow now we can compute r̂ as function of WSDij , HS,ij and SH,ij (note that the tensor
DSij

Dt in
Eqn. (9) is zero for the rotating channel flow):

r̂ = WSDij(HS,ij + SH,ij) = WSD12(HS,12 + SH,12) +WSD21(HS,21 + SH,21) (14)

Figure 13 on the top right compares the volScalarField r̂ written to the hard drive with the quantity
using the volTensorFields WSDij , HS,ij and SH,ij computed by means of Eqn. (14). It is evident that
they are identical. The last check shown in Fig. 13 on the bottom center is the consistency check fri
vs. r∗ and r̂. It means that the volTensorField fr1 is plotted against the relation obtained using the
volScalarFields r∗ and r̂ inserted into Eqn. (4). Also in this case the two quantities are identical.

Summing up, we did a consistency check of all terms involved in the computation of fr1 and did not
find any inconsistencies. Hence, we can deduce with a high degree of confidence, that the equations
are implemented correctly. Since we did not find any inconsistencies, we can deduce that the current
implementation of the equations shown in Shur et al. [1] is different from the one of the authors of the
article referenced.

In order to confirm the above mentioned hypothesis, we will check in the following if our implementation
of the equations provided by Shur at al. [1] is the same as the implementation done by the authors of
the article. As already mentioned above, the term fr1 is a function of the velocity gradient uy and the
rotation rate Ω3. In order to compute fr1 as function of the velocity, the reader can extract the velocity
profile computed by Shur et al. [1] from the article or use the data provided in the case files. The data
provided with the case are extracted manually from the paper with a web program and are a bit wiggly.
After that, the interested reader can use the velocity extracted from the paper to check if the term fr1
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as plotted by Shur et al. [1] can be retrieved from the velocity shown in the same paper. In the case
files there is a python script which performs this task and implements the analytical equations Eqns.
(10)-(14). The results of this computations are shown in Fig. 14. In the figure we see fr1 computed using
the velocity of the current implementation together with the python script (red curve), fr1 computed by
the turbulence model inside OpenFOAM (green curve), fr1 computed using the velocity extracted from
the paper by Shur et al. [1] together with the python script (blue curve) and fr1 extract directly from
the paper by Shur et al. [1] (black curve). We see that the red and green curve coincide very well. This
means that the implementation within OpenFOAM is consistent with the analytical relation derived for
a rotating channel case (see Eqns. (10)-(14)). We can also conclude that the current implementation
differs from the implementation of Shur et al. [1] since the blue and black curve do not coincide. The
exact reason why the present fr1 term is different from the one computed by Shur et al. [1] can not be
definitely clarified. The interested reader may help to solve this issue.

Figure 14. Comparison of the term fr1 computed using the velocity of the current im-
plementation together with a python script (red curve), fr1 computed by the turbulence
model inside OpenFOAM (green curve), fr1 computed using the velocity extracted from
the paper by Shur et al. [1] together with the same python script as for the red curve
(blue curve) and fr1 extract directly from the paper by Shur et al. [1] (black curve)
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